2021, Number 2
<< Back Next >>
Cuba y Salud 2021; 16 (2)
Covid-19 y afecciones neurológicas
Lorigados PL, Pavón FN
Language: Spanish
References: 75
Page: 87-96
PDF size: 266.52 Kb.
ABSTRACT
Introduction: although SARS-CoV is considered to be primarily
a respiratory disease, there is multiple evidence that the virus
can affect various organ systems including the central nervous
system. Currently, in the presence of SARS-CoV-2, the evidence
of the neuroinvasive capacity of this virus and the occurrence of
neurological disorders associated with the current coronavirus
are reviewed and discussed.
Development: this review comments and summarizes the
main experiences reported on the presence of central nervous
system conditions related to COVID-19. It makes an analysis of
the invasion pathways of the coronavirus to the central nervous
system, as well as a description of the relationship of COVID-19
with neurological diseases. A search was carried out in the
electronic databases MEDLINE through PubMed and Scopus.
The revised appointments were limited from December 2019 to
August 2020.
Conclusions: the follow-up of patients with COVID-19 should
address the evaluation of events presented in the central nervous
system both from a clinical and prognostic point of view due to
the actual presence of different neurological manifestations in
patients positive for SARS-CoV -2.
REFERENCES
Asadi-Pooya AA, Simani L. Central nervous system manifestations of COVID-19: A systematic review. Journal of the NeurologicalSciences. 2020:116832. https://doi.org/10.1016/j.jns.2020.116832
Li YC, Bai WZ, Hashikawa T. The neuroinvasive potential of SARS‐CoV2 may play a role in the respiratory failure of COVID‐19 patients.Journal of medical virology. 2020;92(6):552-5. https://doi.org/10.1002/jmv.25728
Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus–infected pneumonia in Wuhan, China. Jama. 2020;323(11):1061-9. doi:10.1001/jama.2020.1585
Xu J, Ikezu T. The comorbidity of HIV-associated neurocognitive disorders and Alzheimer’s disease: a foreseeable medical challengein post-HAART era. Journal of Neuroimmune Pharmacology. 2009;4(2):200-12. https://link.springer.com/article/10.1007/s11481-008-9136-0
Katayama Y, Hotta H, Nishimura A, Tatsuno Y, Homma M. Detection of measles virus nucleoprotein mRNA in autopsied brain tissues.Journal of General Virology. 1995;76(12):3201-4. https://doi.org/10.1099/0022-1317-76-12-3201
Fazzini E, Fleming J, Fahn S. Cerebrospinal fluid antibodies to coronavirus in patients with Parkinson’s disease. Movement disorders:official journal of the Movement Disorder Society. 1992;7(2):153-8. https://doi.org/10.1002/mds.870070210
Murray RS, Brown B, Brain D, Cabirac GF. Detection of coronavirus RNA and antigen in multiple sclerosis brain. Annals of Neurology:Official Journal of the American Neurological Association and the Child Neurology Society. 1992;31(5):525-33. https://doi.org/10.1002/ana.410310511
Sharma K, Tengsupakul S, Sanchez O, Phaltas R, Maertens P. Guillain–Barré syndrome with unilateral peripheral facial and bulbar palsyin a child: a case report. SAGE open medical case reports. 2019;7:2050313X19838750. https://doi.org/10.1177/2050313X19838750
Algahtani H, Subahi A, Shirah B. Neurological complications of Middle East respiratory syndrome coronavirus: a report of two cases andreview of the literature. Case reports in neurological medicine. 2016;2016. https://doi.org/10.1155/2016/3502683
Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 inWuhan, China. JAMA neurology. 2020;77(6):683-90. https://jamanetwork.com/journals/jamaneurology/article-abstract/2764549
Wang H-Y, Li X-L, Yan Z-R, Sun X-P, Han J, Zhang B-W. Potential neurological symptoms of COVID-19. Therapeutic Advances inNeurological Disorders. 2020;13:1756286420917830. https://doi.org/10.1177/1756286420917830
Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host–virus interaction,and proposed neurotropic mechanisms. ACS chemical neuroscience. 2020;11(7):995-8. https://doi.org/10.1021/acschemneuro.0c00122
Baig AM, Sanders EC. Potential Neuroinvasive Pathways of SARS‐CoV‐2: Deciphering the Spectrum of Neurological Deficit Seen inCoronavirus Disease 2019 (COVID‐19). Journal of Medical Virology. 2020. https://doi.org/10.1002/jmv.26105
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronaldeath in the absence of encephalitis in mice transgenic for human ACE2. Journal of virology. 2008;82(15):7264-75. https://jvi.asm.org/content/82/15/7264.short
Wilson MP, Jack AS. Coronavirus disease (COVID-19) in neurology and neurosurgery: A scoping review of the early literature. ClinicalNeurology and Neurosurgery. 2020:105866. https://doi.org/10.1016/j.clineuro.2020.105866
Steardo L, Steardo Jr L, Zorec R, Verkhratsky A. Neuroinfection may contribute to pathophysiology and clinical manifestations ofCOVID‐19. Acta Physiologica. 2020:e13473. https://doi.org/10.1111/apha.13473
Sun T, Guan J. Novel coronavirus and the central nervous system. European Journal of Neurology. 2020. https://doi.org/10.1111/ene.14227
Matías-Guiu J, Gomez-Pinedo U, Montero-Escribano P, Gomez-Iglesias P, Porta-Etessam J, Matias-Guiu J. Should we expect neurologicalsymptoms in the SARS-CoV-2 epidemic? Neurología (English Edition). 2020. https://doi.org/10.1016/j.nrleng.2020.03.002
Hosking MP, Lane TE. The pathogenesis of murine coronavirus infection of the central nervous system. Critical Reviews™ in Immunology. 2010;30(2).
Xu J, Zhong S, Liu J, Li L, Li Y, Wu X, et al. Detection of severe acute respiratory syndrome coronavirus in the brain: potential role ofthe chemokine mig in pathogenesis. Clinical infectious diseases. 2005;41(8):1089-96. https://doi.org/10.1086/444461
Lau K-K, Yu W-C, Chu C-M, Lau S-T, Sheng B, Yuen K-Y. Possible central nervous system infection by SARS coronavirus. Emerginginfectious diseases. 2004;10(2):342. doi: 10.3201/eid1002.030638
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. The American journal of pathology.2007;170(4):1136-47. https://doi.org/10.2353/ajpath.2007.061088
Tang JW, To KF, Lo AW, Sung JJ, Ng H, Chan PK. Quantitative temporal‐spatial distribution of severe acute respiratory syndromeassociatedcoronavirus (SARS‐CoV) in post‐mortem tissues. Journal of medical virology. 2007;79(9):1245-53. https://doi.org/10.1002/jmv.20873
Hamming I, Timens W, Bulthuis M, Lely A, Navis Gv, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARScoronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology: A Journal of the Pathological Society of GreatBritain and Ireland. 2004;203(2):631-7. https://doi.org/10.1002/path.1570
Boonacker E, Van Noorden CJ. The multifunctional or moonlighting protein CD26/DPPIV. European journal of cell biology. 2003;82(2):53-73. https://doi.org/10.1078/0171-9335-00302
Tsai L-K, Hsieh S-T, Chao C-C, Chen Y-C, Lin Y-H, Chang S-C, et al. Neuromuscular disorders in severe acute respiratory syndrome.Archives of neurology. 2004;61(11):1669-73. doi:10.1001/archneur.61.11.1669
Chao C, Tsai L, Chiou Y, Tseng M, Hsieh S, Chang S, et al. Peripheral nerve disease in SARS:: Report of a case. Neurology.2003;61(12):1820-1. https://doi.org/10.1212/01.WNL.0000099171.26943.D0
Yeh EA, Collins A, Cohen ME, Duffner PK, Faden H. Detection of coronavirus in the central nervous system of a child with acutedisseminated encephalomyelitis. Pediatrics. 2004;113(1):e73-e6. https://doi.org/10.1542/peds.113.1.e73
Hui DS, Zumla A. Severe acute respiratory syndrome: historical, epidemiologic, and clinical features. Infectious Disease Clinics.2019;33(4):869-89. https://doi.org/10.1016/j.idc.2019.07.001
Desforges M, Le Coupanec A, Brison É, Meessen-Pinard M, Talbot PJ. Neuroinvasive and neurotropic human respiratory coronaviruses:potential neurovirulent agents in humans. Infectious Diseases and Nanomedicine I: Springer; 2014. p. 75-96. https://link.springer.com/chapter/10.1007/978-81-322-1777-0_6
Bohmwald K, Galvez N, Ríos M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Frontiers in cellular neuroscience.2018;12:386. https://doi.org/10.3389/fncel.2018.00386
Koyuncu OO, Hogue IB, Enquist LW. Virus infections in the nervous system. Cell host & microbe. 2013;13(4):379-93. https://doi.org/10.1016/j.chom.2013.03.010
Desforges M, Le Coupanec A, Dubeau P, Bourgouin A, Lajoie L, Dubé M, et al. Human coronaviruses and other respiratory viruses:underestimated opportunistic pathogens of the central nervous system? Viruses. 2020;12(1):14. https://doi.org/10.3390/v12010014
Hung EC, Chim SS, Chan PK, Tong YK, Ng EK, Chiu RW, et al. Detection of SARS coronavirus RNA in the cerebrospinal fluid of a patientwith severe acute respiratory syndrome. Clinical Chemistry. 2003;49(12):2108. doi: 10.1373/clinchem.2003.025437
Li Y, Li H, Fan R, Wen B, Zhang J, Cao X, et al. Coronavirus infections in the central nervous system and respiratory tract show distinctfeatures in hospitalized children. Intervirology. 2016;59(3):163-9. https://doi.org/10.1159/000453066
Saad M, Omrani AS, Baig K, Bahloul A, Elzein F, Matin MA, et al. Clinical aspects and outcomes of 70 patients with Middle Eastrespiratory syndrome coronavirus infection: a single-center experience in Saudi Arabia. International Journal of Infectious Diseases.2014;29:301-6. https://doi.org/10.1016/j.ijid.2014.09.003
Li K, Wohlford-Lenane C, Perlman S, Zhao J, Jewell AK, Reznikov LR, et al. Middle East respiratory syndrome coronavirus causesmultiple organ damage and lethal disease in mice transgenic for human dipeptidyl peptidase 4. The Journal of infectious diseases.2016;213(5):712-22. https://doi.org/10.1093/infdis/jiv499
Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, et al. Organ distribution of severe acute respiratory syndrome (SARS) associatedcoronavirus (SARS‐CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. The Journal of Pathology: AJournal of the Pathological Society of Great Britain and Ireland. 2004;203(2):622-30. https://doi.org/10.1002/path.1560
Baig AM. Updates on what ACS reported: emerging evidences of COVID-19 with nervous system involvement. ACS ChemicalNeuroscience. 2020;11(9):1204-5. https://doi.org/10.1021/acschemneuro.0c00181
Baig AM. Neurological manifestations in COVID‐19 caused by SARS‐CoV‐2. CNS neuroscience & therapeutics. 2020;26(5):499.doi: 10.1111/cns.13372
Baig AM. Designer’s microglia with novel delivery system in neurodegenerative diseases. Medical hypotheses. 2014;83(4):510-2.https://doi.org/10.1016/j.mehy.2014.08.003
Gowrisankar YV, Clark MA. Angiotensin II regulation of angiotensin converting enzymes in spontaneously hypertensive rat primaryastrocyte cultures. Journal of neurochemistry. 2016;138(1):74-85. https://doi.org/10.1111/jnc.13641
Daly JL, Simonetti B, Plagaro CA, Williamson MK, Shoemark DK, Simon-Gracia L, et al. Neuropilin-1 is a host factor for SARS-CoV-2infection. bioRxiv. 2020. https://doi.org/10.1101/2020.06.05.134114
Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry andprovides a possible pathway into the central nervous system. bioRxiv. 2020. https://doi.org/10.1101/2020.06.07.137802
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 andTMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020. https://doi.org/10.1016/j.cell.2020.02.052
Ahmad I, Rathore FA. Neurological manifestations and complications of COVID-19: A literature review. Journal of Clinical Neuroscience.2020. https://doi.org/10.1016/j.jocn.2020.05.017
Zhao K, Huang J, Dai D, Feng Y, Liu L, Nie S. Acute myelitis after SARS-CoV-2 infection: a case report. MedRxiv. 2020. https://doi.org/10.1101/2020.03.16.20035105
Helms J, Kremer S, Merdji H, Clere-Jehl R, Schenck M, Kummerlen C, et al. Neurologic features in severe SARS-CoV-2 infection. NewEngland Journal of Medicine. 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2008597
Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B. COVID-19–associated acute hemorrhagic necrotizing encephalopathy:CT and MRI features. Radiology. 2020:201187. https://doi.org/10.1148/radiol.2020201187
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.The lancet. 2020;395(10223):497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
quan Li L, Huang T, qing Wang Y, ping Wang Z, Liang Y, bi Huang T, et al. COVID-19 patients’ clinical characteristics, discharge rate,and fatality rate of meta-analysis. Journal of Medical Virology. 2020;92(6). https://doi.org/10.1002/jmv.25757
Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019:retrospective study. Bmj. 2020;368. https://doi.org/10.1136/bmj.m1091
Sharifi-Razavi A, Karimi N, Zarvani A, Cheraghmakani H, Baghbanian SM. Ischemic stroke associated with novel coronavirus 2019: areport of three cases. International Journal of Neuroscience. 2020:1-5. https://doi.org/10.1080/00207454.2020.1782902
Vollono C, Rollo E, Romozzi M, Frisullo G, Servidei S, Borghetti A, et al. Focal status epilepticus as unique clinical feature of COVID-19:A case report. Seizure. 2020. https://doi.org/10.1016/j.seizure.2020.04.009
Sohal S, Mossammat M. COVID-19 Presenting with Seizures. IDCases. 2020:e00782. https://doi.org/10.1016/j.idcr.2020.e00782
Xiang P, Xu X, Gao L, Wang H, Xiong H, Li R. First case of 2019 novel coronavirus disease with encephalitis. ChinaXiv. 2020;202003:00015.
Moriguchi T, Harii N, Goto J, Harada D, Sugawara H, Takamino J, et al. A first case of meningitis/encephalitis associated with SARSCoronavirus-2. International Journal of Infectious Diseases. 2020. https://doi.org/10.1016/j.ijid.2020.03.062
Filatov A, Sharma P, Hindi F, Espinosa PS. Neurological complications of coronavirus disease (COVID-19): encephalopathy. Cureus.2020;12(3). doi: 10.7759/cureus.7352
Xinhua. Beijing hospital confirms nervous system infections by novel coronavirus. 2020.
Huang YH, Jiang D, Huang JT. A Case of COVID-19 Encephalitis. Brain, Behavior, and Immunity. 2020. doi: 10.1016/j.bbi.2020.05.012
Zhao H, Shen D, Zhou H, Liu J, Chen S. Guillain-Barré syndrome associated with SARS-CoV-2 infection: causality or coincidence? TheLancet Neurology. 2020;19(5):383-4. https://doi.org/10.1016/S1474-4422(20)30109-5
Sedaghat Z, Karimi N. Guillain Barre syndrome associated with COVID-19 infection: a case report. Journal of Clinical Neuroscience.2020. https://doi.org/10.1016/j.jocn.2020.04.062
Toscano G, Palmerini F, Ravaglia S, Ruiz L, Invernizzi P, Cuzzoni MG, et al. Guillain–Barré syndrome associated with SARS-CoV-2. NewEngland Journal of Medicine. 2020. https://www.nejm.org/doi/full/10.1056/NEJMc2009191
Virani A, Rabold E, Hanson T, Haag A, Elrufay R, Cheema T, et al. Guillain-Barré syndrome associated with SARS-CoV-2 infection.IDCases. 2020:e00771. https://doi.org/10.1016/j.idcr.2020.e00771
Coen M, Jeanson G, Almeida LAC, Hübers A, Stierlin F, Najjar I, et al. Guillain-Barré syndrome as a complication of SARS-CoV-2infection. Brain, behavior, and immunity. 2020. doi: 10.1016/j.bbi.2020.04.074
Camdessanche J-P, Morel J, Pozzetto B, Paul S, Tholance Y, Botelho-Nevers E. COVID-19 may induce Guillain-Barré syndrome. Revueneurologique. 2020. doi: 10.1016/j.neurol.2020.04.003
Padroni M, Mastrangelo V, Asioli GM, Pavolucci L, Abu-Rumeileh S, Piscaglia MG, et al. Guillain-Barré syndrome following COVID-19:new infection, old complication? Journal of neurology. 2020:1. https://doi.org/10.1007/s00415-020-09849-6
Alberti P, Beretta S, Piatti M, Karantzoulis A, Piatti ML, Santoro P, et al. Guillain-Barré syndrome related to COVID-19 infection.Neurology-Neuroimmunology Neuroinflammation. 2020;7(4). https://doi.org/10.1212/NXI.0000000000000741
Kim J-E, Heo J-H, Kim H-o, Song S-h, Park S-S, Park T-H, et al. Neurological complications during treatment of middle east respiratorysyndrome. Journal of Clinical Neurology. 2017;13(3):227-33. doi: 10.3988/jcn.2017.13.3.227
Rey NL, Wesson DW, Brundin P. The olfactory bulb as the entry site for prion-like propagation in neurodegenerative diseases.Neurobiology of disease. 2018;109:226-48. https://doi.org/10.1016/j.nbd.2016.12.013
Tulisiak CT, Mercado G, Peelaerts W, Brundin L, Brundin P. Can infections trigger alpha-synucleinopathies? Progress in molecularbiology and translational science. 168: Elsevier; 2019. p. 299-322. https://doi.org/10.1016/bs.pmbts.2019.06.002
Papa SM, Brundin P, Fung VS, Kang UJ, Burn DJ, Colosimo C, et al. Impact of the COVID-19 pandemic on Parkinson’s disease andmovement disorders. Mov Disord. 2020;6. DOI: 10.1002/mds.28067
Abdennour L, Zeghal C, Dème M, Puybasset L, editors. Interaction cerveau-poumon. Annales francaises d’anesthesie et de reanimation;2012: Elsevier. https://doi.org/10.1016/j.annfar.2012.04.013
Montalvan V, Lee J, Bueso T, De Toledo J, Rivas K. Neurological manifestations of COVID-19 and other coronavirus infections: Asystematic review. Clinical Neurology and Neurosurgery. 2020;194:105921. https://doi.org/10.1016/j.clineuro.2020.105921
Lu L, Xiong W, Liu D, Liu J, Yang D, Li N, et al. New onset acute symptomatic seizure and risk factors in coronavirus disease 2019: Aretrospective multicenter study. Epilepsia. 2020. https://doi.org/10.1111/epi.16524