2022, Number 1
<< Back Next >>
Acta Ortop Mex 2022; 36 (1)
Use of preoperative planning and 3D printing in orthopedics and traumatology: entering a new era
Moya D, Gobbato B, Valente S, Roca R
Language: Spanish
References: 65
Page: 39-47
PDF size: 229.12 Kb.
ABSTRACT
Three-dimensional (3D) printing includes a group of technologies by means of which it is possible to generate three-dimensional objects from binary information. Orthopedics and traumatology are fields of medicine in which 3D planning has had the greatest impact, especially in trauma and oncological orthopedics. Applications of this technique include diagnosis, surgical planning, intraoperative guide creation, custom implants, surgical training, orthotic and prosthetic impression, and bioprinting. Advantages have been demonstrated in its use, such as greater technical precision, shorter surgical times, decreased blood loss and less exposure to X-rays. Although the process is increasingly optimized and accessible due to advances in software and automation, it is a technique that requires adequate training. The objective of this review is to offer an approach to this technology and its basic principles.
REFERENCES
Gross BC, Erkal JL, Lockwood SY, Chen C, Spence DM. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal Chem. 2014; 86(7): 3240-53. Available in: https://doi.org/10.1021/ac403397r
Green N, Glatt V, Tetsworth K, Wilson L J, Grant C A. A Practical guide to image processing in the creation of 3D models for orthopedics. Tech Orthop. 2016; 31(3): 153-63. doi: 10.1097/BTO.0000000000000181
European Commission. Digital transformation monitor: the disruptive nature of 3D printing. [Access June 29, 2021] Available in: https://ati.ec.europa.eu/reports/technology-watch/disruptive-nature-3d-printing
Skelley NW, Smith MJ, Ma R, Cook JL. Three-dimensional printing technology in orthopaedics. J Am Acad Orthop Surg. 2019; 27(24): 918-25. doi: 10.5435/JAAOS-D-18-00746.
Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003; 21(4): 157-61. doi: 10.1016/S0167-7799(03)00033-7.
Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005; 16(12): 1121-4. doi: 10.1007/s10856-005-4716-5.
Grant CA, Izatt MT, Labrom RD, Askin GN, Glatt V. Use of 3D printing in complex spinal surgery: Historical perspectives, current usage, and future directions. Tech Orthop. 2016; 31(3): 172-80.
Levesque JN, Shah A, Ekhtiari S, Yan JR, Thornley P, Williams DS. Three-dimensional printing in orthopaedic surgery: a scoping review. EFORT Open Rev. 2020; 5(7): 430-41. doi: 10.1302/2058-5241.5.190024.
Tetsworth K, Block S, Glatt V. Putting 3D modelling and 3D printing into practice: virtual surgery and preoperative planning to reconstruct complex post-traumatic skeletal deformities and defects. SICOT J. 2017; 3: 16. doi: 10.1051/sicotj/2016043.
Vaishya R, Patralekh MK, Vaish A, Agarwal AK, Vijay V. Publication trends and knowledge mapping in 3D printing in orthopaedics. J Clin Orthop Trauma. 2018; 9(3): 194-201. doi: 10.1016/j.jcot.2018.07.006.
Jones GG, Jaere M, Clarke S, Cobb J. 3D printing and high tibial osteotomy. EFORT Open Rev. 2018; 3(5): 254-9. doi: 10.1302/2058-5241.3.170075.
Wu AM, Shao ZX, Wang JS, Yang XD, Weng WQ, Wang XY, et al. The accuracy of a method for printing three-dimensional spinal models. PLoS One. 2015; 10(4): e0124291. doi: 10.1371/journal.pone.0124291.
Izatt MT, Thorpe PL, Thompson RG, D'Urso PS, Adam CJ, Earwaker JW, et al. The use of physical biomodelling in complex spinal surgery. Eur Spine J. 2007; 16(9): 1507-18. doi: 10.1007/s00586-006-0289-3.
Xiao JR, Huang WD, Yang XH, Yan WJ, Song DW, Wei HF, et al. En bloc resection of primary malignant bone tumor in the cervical spine based on 3-dimensional printing technology. Orthop Surg. 2016; 8(2): 171-8. doi: 10.1111/os.12234.
Kievit AJ, Dobbe JGG, Streekstra GJ, Blankevoort L, Schafroth MU. Predicted osteotomy planes are accurate when using patient-specific instrumentation for total knee arthroplasty in cadavers: a descriptive analysis. Knee Surg Sports Traumatol Arthrosc. 2018; 26(6): 1751-8. doi: 10.1007/s00167-017-4721-5.
Niu M, Ma F, Ma JR, Li JW, Wu XN, Wang T, et al. Total knee arthroplasty with 3D printing technique versus conventional surgery: comparison of the outcomes. Nan Fang Yi Ke Da Xue Xue Bao. 2017; 37(11): 1467-75. doi: 10.3969/j.issn.1673-4254.2017.11.07.
Khanna K, Brabston EW, Qayyum U, Gardner TR, Levine WN, Jobin CM, et al. Proximal humerus fracture 3-D modeling. Am J Orthop (Belle Mead NJ). 2018; 47(4). doi: 10.12788/ajo.2018.0023.
Oka K, Tanaka H, Okada K, Sahara W, Myoui A, Yamada T, et al. Three-dimensional corrective osteotomy for malunited fractures of the upper extremity using patient-matched instruments: A prospective, multicenter, open-label, single-arm trial. J Bone Joint Surg Am. 2019; 101(8): 710-21. doi: 10.2106/JBJS.18.00765.
Verborgt O, Hachem AI, Eid K, Vuylsteke K, Ferrand M, Hardy P. Accuracy of patient-specific guided implantation of the glenoid component in reversed shoulder arthroplasty. Orthop Traumatol Surg Res. 2018; 104(6): 767-72. doi: 10.1016/j.otsr.2018.01.010.
Schweizer A, Mauler F, Vlachopoulos L, Nagy L, Fürnstahl P. Computer-assisted 3-dimensional reconstructions of Scaphoid fractures and nonunions with and without the use of patient-specific guides: Early clinical outcomes and postoperative assessments of reconstruction accuracy. J Hand Surg Am. 2016; 41(1): 59-69. doi: 10.1016/j.jhsa.2015.10.009.
Buller L, Smith T, Bryan J, Klika A, Barsoum W, Iannotti JP. The use of patient-specific instrumentation improves the accuracy of acetabular component placement. J Arthroplasty. 2013; 28(4): 631-6. doi: 10.1016/j.arth.2012.12.001.
Attias N, Lindsey RW, Starr AJ, Borer D, Bridges K, Hipp JA. The use of a virtual three-dimensional model to evaluate the intraosseous space available for percutaneous screw fixation of acetabular fractures. J Bone Joint Surg Br. 2005; 87(11): 1520-3. doi: 10.1302/0301-620X.87B11.16614.
Fang C, Cai H, Kuong E, Chui E, Siu YC, Ji T, et al. Surgical applications of three-dimensional printing in the pelvis and acetabulum: from models and tools to implants. Unfallchirurg. 2019; 122(4): 278-85. doi: 10.1007/s00113-019-0626-8.
Gouin F, Paul L, Odri GA, Cartiaux O. Computer-assisted planning and patient-specific instruments for bone tumor resection within the pelvis: a series of 11 patients. Sarcoma. 2014; 2014: 842709. doi: 10.1155/2014/842709.
Van Genechten W, Van Tilborg W, Van den Bempt M, Van Haver A, Verdonk P. Feasibility and 3D planning of a novel patient-specific instrumentation technique in medial opening-wedge high tibial osteotomy. J Knee Surg. 2021; 34(14): 1560-9. doi: 10.1055/s-0040-1710379.
Jud L, Müller DA, Fürnstahl P, Fucentese SF, Vlachopoulos L. Joint-preserving tumour resection around the knee with allograft reconstruction using three-dimensional preoperative planning and patient-specific instruments. Knee. 2019; 26(3): 787-93. doi: 10.1016/j.knee.2019.02.015.
Cabarcas BC, Cvetanovich GL, Espinoza-Orias AA, Inoue N, Gowd AK, Bernardoni E, et al. Novel 3-dimensionally printed patient-specific guide improves accuracy compared with standard total shoulder arthroplasty guide: a cadaveric study. JSES Open Access. 2019; 3(2): 83-92. doi: 10.1016/j.jses.2019.04.001.
Iannotti JP, Weiner S, Rodriguez E, Subhas N, Patterson TE, Jun BJ, et al. Three-dimensional imaging and templating improve glenoid implant positioning. J Bone Joint Surg Am. 2015; 97(8): 651-8. doi: 10.2106/JBJS.N.00493.
Jacquot A, Gauci MO, Chaoui J, Baba M, Deransart P, Boileau P, et al. Proper benefit of a three dimensional pre-operative planning software for glenoid component positioning in total shoulder arthroplasty. Int Orthop. 2018; 42(12): 2897-906. doi: 10.1007/s00264-018-4037-1.
Kataoka T, Oka K, Miyake J, Omori S, Tanaka H, Murase T. 3-Dimensional prebent plate fixation in corrective osteotomy of malunited upper extremity fractures using a real-sized plastic bone model prepared by preoperative computer simulation. J Hand Surg Am. 2013; 38(5): 909-19.
Grewal S, Dobbe JGG, Kloen P. Corrective osteotomy in symptomatic clavicular malunion using computer-assisted 3-D planning and patient-specific surgical guides. J Orthop. 2018; 15(2): 438-41. doi: 10.1016/j.jor.2018.03.016.
Vlachopoulos L, Schweizer A, Meyer DC, Gerber C, Fürnstahl P. Computer-assisted planning and patient-specific guides for the treatment of midshaft clavicle malunions. J Shoulder Elbow Surg. 2017; 26(8): 1367-73. doi: 10.1016/j.jse.2017.02.011.
Vlachopoulos L, Schweizer A, Graf M, Nagy L, Fürnstahl P. Three-dimensional postoperative accuracy of extra-articular forearm osteotomies using CT-scan based patient-specific surgical guides. BMC Musculoskelet Disord. 2015; 16: 336. doi: 10.1186/s12891-015-0793-x.
Kalamaras M, McEniery P, Thorn K, Bindra R. Rapid prototyping and 3D modeling of osteotomy jigs and drill guides in hand and wrist surgery. Tech Orthop. 2016; 31(3): 164-71.
de Muinck Keizer RJO, Lechner KM, Mulders MAM, Schep NWL, Eygendaal D, Goslings JC. Three-dimensional virtual planning of corrective osteotomies of distal radius malunions: a systematic review and meta-analysis. Strategies Trauma Limb Reconstr. 2017; 12(2): 77-89. doi: 10.1007/s11751-017-0284-8.
Walenkamp MM, de Muinck Keizer RJ, Dobbe JG, Streekstra GJ, Goslings JC, Kloen P, et al. Computer-assisted 3D planned corrective osteotomies in eight malunited radius fractures. Strategies Trauma Limb Reconstr. 2015; 10(2): 109-16. doi: 10.1007/s11751-015-0234-2.
Bundoc RC, Delgado GG, Grozman SA. A novel patient-specific drill guide template for pedicle screw insertion into the subaxial cervical spine utilizing stereolithographic modelling: an in vitro study. Asian Spine J. 2017; 11(1): 4-14.
Chen X, Xu L, Wang Y, Hao Y, Wang L. Image-guided installation of 3D-printed patient-specific implant and its application in pelvic tumor resection and reconstruction surgery. Comput Methods Programs Biomed. 2016; 125: 66-78. doi: 10.1016/j.cmpb.2015.10.020.
Sugawara T, Higashiyama N, Kaneyama S, Sumi M. Accurate and simple screw insertion procedure with patient-specific screw guide templates for posterior C1-C2 fixation. Spine (Phila Pa 1976). 2017; 42(6): E340-6.
Guo F, Dai J, Zhang J, Ma Y, Zhu G, Shen J, et al. Individualized 3D printing navigation template for pedicle screw fixation in upper cervical spine. PLoS One. 2017; 12(2): e0171509.
Giannetti S, Bizzotto N, Stancati A, Santucci A. Minimally invasive fixation in tibial plateau fractures using an pre-operative and intra-operative real size 3D printing. Injury. 2017; 48(3): 784-8.
Zheng W, Chen C, Zhang C, Tao Z, Cai L. The feasibility of 3D printing technology on the treatment of pilon fracture and its effect on doctor-patient communication. Biomed Res Int. 2018; 2018: 8054698. doi: 10.1155/2018/8054698.
Zheng W, Tao Z, Lou Y, Feng Z, Li H, Cheng L, et al. Comparison of the conventional surgery and the surgery assisted by 3D printing technology in the treatment of calcaneal fractures. J Invest Surg. 2018; 31(6): 557-67.
Zhang YD, Wu RY, Xie DD, Zhang L, He Y, Zhang H. Effect of 3D printing technology on pelvic fractures: a Meta-analysis. Zhongguo Gu Shang. 2018; 31(5): 465-471. doi: 10.3969/j.issn.1003-0034.2018.05.013.
Chen H, Wu D, Yang H, Guo K. Clinical use of 3D printing guide plate in posterior lumbar pedicle screw fixation. Med Sci Monit. 2015; 21: 3948-54. doi: 10.12659/msm.895597.
Cho W, Job AV, Chen J, Baek JH. A review of current clinical applications of three-dimensional printing in spine surgery. Asian Spine J. 2018; 12(1): 171-7. doi: 10.4184/asj.2018.12.1.171.
Zheng SN, Yao QQ, Mao FY, Zheng PF, Tian SC, Li JY, et al. Application of 3D printing rapid prototyping-assisted percutaneous fixation in the treatment of intertrochanteric fracture. Exp Ther Med. 2017; 14(4): 3644-50.
Zheng W, Su J, Cai L, Lou Y, Wang J, Guo X, et al. Application of 3D-printing technology in the treatment of humeral intercondylar fractures. Orthop Traumatol Surg Res. 2018; 104(1): 83-8.
Rong X, Wang B, Chen H, Ding C, Deng Y, Ma L, et al. Use of rapid prototyping drill template for the expansive open door laminoplasty: A cadaveric study. Clin Neurol Neurosurg. 2016; 150: 13-7.
Liew Y, Beveridge E, Demetriades AK, Hughes MA. 3D printing of patient-specific anatomy: a tool to improve patient consent and enhance imaging interpretation by trainees. Br J Neurosurg. 2015; 29: 712-4.
Yang L, Shang XW, Fan JN, He ZX, Wang JJ, Liu M, et al. Application of 3D printing in the surgical planning of trimalleolar fracture and doctor-patient communication. Biomed Res Int. 2016; 2016: 2482086.
Martelli N, Serrano C, van den Brink H, Pineau J, Prognon P, Borget I, et al. Advantages and disadvantages of 3-dimensional printing in surgery: A systematic review. Surgery. 2016; 159(6): 1485-500.
Jun Y, Choi K. Design of patient-specific hip implants based on the 3D geometry of the human femur. Adv Eng Software. 2010; 41: 537-47. Available in: https://doi.org/10.1016/j.advengsoft.2009.10.016
Dekker TJ, Steele JR, Federer AE, Hamid KS, Adams SB Jr. Use of patient-specific 3D-printed titanium implants for complex foot and ankle limb salvage, deformity correction, and arthrodesis procedures. Foot Ankle Int. 2018; 39(8): 916-21. doi: 10.1177/1071100718770133.
Smith KE, Dupont KM, Safranski DL, Blair J, Buratti D, Zeetser V, et al. Use of 3D printed bone plate in novel technique to surgically correct hallux valgus deformities. Tech Orthop. 2016; 31(3): 181-9.
Tan G, Zhou Y, Sooriyaarachchi D. Musculoskeletal tissue engineering using fibrous biomaterials. Methods Mol Biol. 2021; 2193: 31-40. doi: 10.1007/978-1-0716-0845-6_4
Paxton N, Powell S, Woodruff MA. Biofabrication: the future of regenerative medicine. Tech Orthop. 2016; 31(3): 190-203. doi: 10.1097/BTO.0000000000000184.
Rosenzweig DH, Carelli E, Steffen T, Jarzem P, Haglund L. 3D-printed ABS and PLA scaffolds for cartilage and nucleus pulposus tissue regeneration. Int J Mol Sci. 2015; 16: 15118-35.
Pehde CE, Bennett J, Lee Peck B, Gull L. Development of a 3-D printing laboratory for foot and ankle applications. Clin Podiatr Med Surg. 2020; 37(2): 195-213. doi: 10.1016/j.cpm.2019.12.011.
Wilcox B, Mobbs RJ, Wu AM, Phan K. Systematic review of 3D printing in spinal surgery: the current state of play. J Spine Surg. 2017; 3(3): 433-43. doi: 10.21037/jss.2017.09.01.
Matter-Parrat V, Liverneaux P. 3D printing in hand surgery. Hand Surg Rehabil. 2019; 38(6): 338-47. doi: 10.1016/j.hansur.2019.09.006.
Merema BJ, Kraeima J, Ten Duis K, Wendt KW, Warta R, Vos E, et al. The design, production and clinical application of 3D patient-specific implants with drilling guides for acetabular surgery. Injury. 2017; 48(11): 2540-7. doi: 10.1016/j.injury.2017.08.059.
Stockmans F, Dezillie M, Vanhaecke J. Accuracy of 3D virtual planning of corrective osteotomies of the distal radius. J Wrist Surg. 2013; 2(4): 306-14. doi: 10.1055/s-0033-1359307.
Coakley M, Hurt DE. 3D Printing in the laboratory: maximize time and funds with customized and open-source labware. J Lab Autom. 2016; 21(4): 489-95.
Buijze GA, Leong NL, Stockmans F, Axelsson P, Moreno R, Ibsen Sorensen A, et al. Three-dimensional compared with two-dimensional preoperative planning of corrective osteotomy for extra-articular distal radial malunion: A multicenter randomized controlled trial. J Bone Joint Surg Am. 2018; 100(14): 1191-202. doi: 10.2106/JBJS.17.00544.