2022, Number 2
<< Back Next >>
Enf Infec Microbiol 2022; 42 (2)
Herd immunity: around COVID-19
Palacios SGC, Rivera MLG, Reyes GNL, Alonso TCA, Vázquez GJM, Solórzano SF, Rodríguez PC
Language: Spanish
References: 48
Page: 61-70
PDF size: 466.14 Kb.
ABSTRACT
The current COVID-19 pandemic has caused more than 422 million confirmed cases and more than 5.8 million deaths
around the world to date, in addition to several adverse economic and social repercussions. Shortly after the beginning
of the pandemic, the so-called herd immunity was proposed as a possibility. This concept, also known as collective
or group immunity refers to the protection of susceptible people by the immunity generated by subjects who were
infected. However, the pandemic soon shows that trying to reach herd immunity only through natural infection would
entail high costs in human lives and health, social and economic nature. By having effective vaccines against this virus,
humanity glimpsed the possibility of more rapid control of the pandemic. The possibility of achieving herd immunity
was raised again, but now through those who received an appropriate vaccination. If the proportion of the immune
population is high, either by vaccination or by natural infection, the infectious agent is less likely to be transmitted, thus
protecting the susceptible population. The number of secondary cases generated by an infectious individual when
the rest of the population is susceptible is known as the “basic reproduction number” or R
0. It is used to estimate the
herd immunity threshold defined as R
0-1/R
0, a parameter used in epidemiology to describe the level of herd immunity
necessary to break the chain of transmission. As the proportion of people with acquired or induced immunity exceeds
this percentage, the spread of the disease would be expected to slow and stop even after all preventive measures
have been relaxed.
REFERENCES
Reingold, A.L., “Infectious disease epidemiology in the 21st century: will it be eradicated or will it reemerge?”,Epidemiol Rev, 2000, 22 (1): 57-63.
World Health Organization (who), “Weekly epidemiologicalupdate on covid-19: 22 February, 2022”,Edition 80. Disponible en: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---22-february-2022. Fecha de consulta: 1 demarzo de 2022.
Pan American Health Organization, “Cumulative confirmedand probable covid-19 cases reported by countriesand territories in the region of the Americas”. Disponibleen: https://www.paho.org/en/topics/coronavirus-infections/coronavirus-disease-covid-19-pandemicConsultado: 01 de marzo de 2022.
Cascella, M., Rajnik, M., Cuomo, A., Dulebohn, S.C. yDi-Napoli, R., “Features, evaluation, and treatment ofcoronavirus (covid-19)”, en StatPearls, Treasure Island,FL, StatPearls Publishing, 10 de agosto de 2020.
Ronco, C., Reis, T. y Husain-Syed, F., “Management ofacute kidney injury in patients with covid-19”, LancetRespir Med, 2020, 8 (7): 738-742.
Ramos, J.J. y Rivas-Estilla, AM., “Impacto epidemiológicoy clínico del covid-19”, Ciencia uanl, 2020, 102.Disponible en: http://cienciauanl.uanl.mx/?p=10162.Fecha de consulta: 1 de marzo de 2022.
Randolph, H.E. y Barreiro, L.B., “Herd immunity: understandingcovid-19”, Immunity, 2020, 52: 737-741.
World Health Organization (who), “Rapid evidenceappraisal for covid-19 therapies (react) Working Group.Association between administration of systemic corticosteroidsand mortality among critically iii patients withcovid-19: a meta-analysis”, jama, 2020; 324 (13): 1330-1341. doi: 10.1001/jama.2020.17023.
Horby, P., Lim, W.S., Emberson, J.R., Mafham, M., Bell,J.L., Linsell, L. et al., “Dexamethasone in hospitalizedpatients with covid-19”, N Engl J Med, 2021, 384 (8):693-704. doi: 10.1056/NEJMoa2021436.
World Health Organization (who), “Rapid evidenceappraisal for covid-19 therapies (react) Working Group.Association between administration of il-6 antagonistsand mortality among patients hospitalized for covid-19: a meta-analysis”, jama, 2021, 326 (6): 499-518.doi:10.1001/jama.2021.11330.
Flaxman, S., Mishra, S., Gandy, A., Unwin, H., Mellan,T.A. y Coupland, H., “Estimating the effects of non-pharmaceuticalinterventions on covid-19 in Europe”, Nature,2020, 584: 257-261.
Fine, P., Eames, K. y Heymann, D.L., “Herd immunity: arough guide”, Clin Infect Dis, 2011, 52 (7): 911-916.
Pallab, G., “Coronavirus: some scientists say UK virus strategyis ‘risking lives’”, bbc, Londres. Disponible en: https://www.bbc.com/news/science-environment-51892402.Fecha de consulta: 1 de marzo de 2020.
Wilson, N., Kvalsvig, A., Barnard, L.T. y Baker, M.G., “Case-fatality risk estimates for covid-19 calculated by usinga lag time for fatality”, Emerg Infect Dis, 2020, 26 (6):1339-1441.
Nasiripour, S., Zamani, F.y Farasatinasab, M. “Can colchicineas an old anti-inflammatory agent be effectivein covid-19?”, J Clin Pharmacol, 2020, 60 (7): 828-829.doi:10.1002/jcph.1645.
John, T.J. y Samuel, R., “Herd immunity and herd effect:new insights and definitions”, Eur J Epidemiol, 2000, 16(7): 601-606.
Lindström, M., “The covid-19 pandemic and the Swedishstrategy: epidemiology and postmodernism”, ssm-PopulationHealth, 2020, 11: 100643.18. Zhou, B., Thao,
T.N., Hoffmann, D., Taddeo, A., Ebert, N. y Labroussaa,F., “sars-cov-2 spike d614g change enhances replicationand transmission”, Nature, 2021, 592: 122-127. Disponibleen: https://doi.org/10.1038/s41586-021-03361-1.
World Health Organization. (who), “Tracing sars-cov-2variants”. Disponible en: https://www.who.int/es/activities/tracking-SARS-CoV-2-variants/tracking-SARS-CoV-2-variants. Fecha de consulta: 1 de marzo de 2022.
Centros para el Control y Prevención de Enfermedades,“Clasificaciones y definiciones de las variantesdel sars-cov-2”. Disponible en: https://espanol.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html#anchor_1632237683347. Fecha de consulta: 1 demarzo de 2022.
“Immunization Agenda 2030: a global strategy to leaveno one behind, immunization, vaccines and biologicals”,2020. Disponible en: https://www.who.int/teams/immunization-vaccines-and-biologicals/strategies/ia2030.Fecha de consulta: 1 de marzo de 2022.
Urbiztondo, L. Borràs, E. Mirada, G. Vacunas contra elcoronavirus. Vacunas, 2020; 21 (1): 69-72. doi:10.1016/j.vacun.2020.04.002.
Centers for Disease Control and Prevention, “Rates ofcovid-19 cases and deaths by vaccination status”. Disponibleen: https://covid.cdc.gov/covid-data-tracker/#covidnet-hospitalizations-vaccination. Fecha de consulta:1 de marzo de 2022.
Kwok, K.O., Lai, F., Wei, W.I., Wong, Y.S. y Tang, W.T.,“Herd immunity: estimating the level required to haltthe covid-19 epidemics in affected countries”, J Infect,2020, 80 (6): e32-e33.
Mallory, M.L., Lindesmith, L.C. y Baric, R.S., “Vaccination-induced herd immunity: successes and challenges”,J Allergy Clin Immunol, 2018, 142 (1): 64-66.
Britton, T., Ball, F. y Trapman, P., “A mathematical modelreveals the influence of population heterogeneity onherd immunity to sars-cov-2”, Science, 2020, 369 (6505):846-849.
Verity, R., Okell, L.C., Dorigatti, I. et al., “Estimates ofthe severity of coronavirus disease 2019: a model-basedanalysis”, Lancet Infect Dis, 2020, 20 (6): 669-677.
Norman, T.J., “The role of statistics in controlling anderadicating infectious diseases”, The Statistician, 1985,34 (1): 3-17.
Anderson, R.M. y May, R.M., “Vaccination and herdimmunity to infectious diseases”, Nature, 1985, 318(6044): 323-329.
Tang, B., Bragazzi, N.L., Li, Q., Tang, S., Xiao, Y. y Wu,J., “An updated estimation of the risk of transmissionof the novel coronavirus (2019-ncov)”, Infect Dis Model,2020, 5: 248-255. doi:10.1016/j.idm.2020.02.001.
Wilches-Visbal, J.H. y Castillo-Pedraza, M.C., “Aproximaciónmatemática del modelo epidemiológico sir para lacomprensión de las medidas de contención contra lacovid-19”, Rev Esp Salud Pública, 2020, 94: e1-11.
Montesinos, O.A. y Hernández, C.M., “Modelos matemáticospara enfermedades infecciosas”, Salud PúblicaMex, 2007, 49 (3): 218-226.
Diekmann, O., Heesterbeek, J.A. y Metz, J.A., “On thedefinition and the computation of the basic reproductionratio R0 in models for infectious diseases in heterogeneouspopulations”, J Math Biol, 1990, 28: 365-382.
Fine, P., Eames, K. y Heymann, D.L., “Herd immunity: arough guide”, Clin Infect Dis, 2011, 52 (7): 911-916.
García-García, D., Morales, E., Fonfría, E.S., Vigo, I. yBordehore, C., “Caveats on covid-19 herd immunitythreshold: the Spain case”, Sci Rep, 2022, 12 (1): 598.doi: 10.1038/s41598-021-04440-z.
Elsaid, M., Nasef, M.A. y Huy, N.T., “R0 of covid-19 andits impact on vaccination coverage: compared with previousoutbreaks”, Hum Vaccin Immunother, 2021, 17(11): 3850-3854. doi: 10.1080/21645515.2020.1865046.
Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L. y Tong, Y.,“Early transmission dynamics in Wuhan, China, of novelcoronavirus-infected pneumonia”, N Engl J Med, 2020,
382 (13): 1199-1207.38. Sanche, S., Lin, Y., Xu, C., Romero-Severson, E., Hengartner,N. y Ke, R., “High contagiousness and rapidspread of severe acute respiratory syndrome coronavirus2”, Emerging Infect Dis, 2020, 26 (7): 1470-1477.
Liu, Y. y Rocklöv, J., “The reproductive number of thedelta variant of sars-cov-2 is far higher compared to theancestral sars-cov-2 virus”, J Travel Med, 2021, 28 (7):124. doi: 10.1093/jtm/taab124.
Madhi, S.A., Kwatra, G., Myers, J.E., Jassat, W., Dhar,N., Mukendi, C.K. et al., “Population immunity and covid-19 severity with omicron variant in South Africa”, NEngl J Med, 2022. doi: 10.1056/NEJMoa2119658.
Instituto Nacional de Estadística y Geografía (inegi),“Demografía y sociedad: población por edad y sexo”.Disponible en: https://www.inegi.org.mx/temas/estructura/.Fecha de consulta: 1 de marzo de 2022.
Kánter-Coronel, I., “Muertes por covid-19 en México”,Mirada Legislativa No. 190, Instituto Belisario Domínguez,Senado de la República, Ciudad de México, 2020.Disponible en: http://bibliodigitalibd.senado.gob.mx/handle/123456789/1871. Fecha de consulta: 11 de marzode 2022.
Shook, L.L., Atyeo, C.G., Yonker, L.M., Fasano, A.,Gray, K.J., Alter, G. et al., “Durability of anti-spike antibodiesin infants after maternal covid-19 vaccination ornatural infection”, jama, 2022, e221206. doi: 10.1001/jama.2022.1206.
Johns Hopkins University, Coronavirus Resource Center,“Mortality analyses”. Disponible en: jhu.edu. Fechade consulta: 1 de marzo de 2022.
Oxford Martin School, covid-19 Data Repository by theCenter for Systems Science and Engineering (csse) atJohns Hopkins University, “Coronavirus (covid-19) testing2022. Disponible en: https://ourworldindata.org/coronavirus-testing. Fecha de consulta: 1 de marzo de2022.
Aragón-Nogales, R., Vargas-Almanza, I. y Miranda-Novales,MG., “covid-19 por sars-cov-2: la nueva emergenciade salud”, Rev Mex Pediatr, 2019, 86 (6): 213-218. doi:10.35366/91871.
Orlowski, E. y Goldsmith, D., “Four months into thecovid-19 pandemic, Sweden’s prized herd immunity isnowhere in sight”, J R Soc Med, 2020, 113 (8): 292-298.
Hayek, S., Shaham, G., Ben-Shlomo, Y., Kepten, E.,Dagan, N., Nevo, D. et al., “Indirect protection of childrenfrom sars-cov-2 infection through parental vaccination”,Science, 2022, eabm3087. doi: 10.1126/science.abm3087.