2021, Number 2
<< Back
Biotecnol Apl 2021; 38 (2)
Molecular identification of promising Nicotiana spp. genotypes resistant to multiple diseases
Pérez-Rodríguez JL, Toledo V, García H, Díaz M, Gorski R, Tocate F, Lopes L, Padua J
Language: English
References: 50
Page: 2221-2226
PDF size: 593.42 Kb.
ABSTRACT
At the international level, molecular marker-assisted selection has been used in tobacco (Nicotiana tabacum L.) breeding programs. However, its use in the genetic improvement of Cuban tobacco is limited. The objective of this research was to identify promising genotypes resistant to multiple diseases by means of DNA markers. Twenty-five accessions including Cuban cultivars and their parents were analyzed. As a result, the SCAR Mil27 marker showed the presence of the RBM1 region that provides partial resistance to P. hyoscyami in the Cuban dark tobacco cultivars, but not in the ‘Criollo’ and ‘Corojo’ cultivars, coincidentally reported as susceptible. The SCAR Php marker linked to the Php gene, which confers monogenic resistance to race 0 of P. nicotianae, was validated and its absence was proved in the evaluated cultivars. Of the Cuban cultivars only ‘Criollo 98’, ‘Corojo 99’, ‘Corojo 2006’ and ‘Corojo 2012’ were identified as carriers of the N gene, which confers dominant monogenic resistance to VMT. ‘San Luis 22’ was the only cultivar carrying the Rk1 gene, which confers resistance to Meloidogyne sp. and the va gene, which confers monogenic resistance to PVY, was not identified in Cuban cultivars. This research constitutes the first molecular characterization of Cuban tobacco germplasm in terms of its resistance to the main diseases. Effective markers are now available for the selection of disease resistant genotypes, a fundamental step for their introduction in Cuban tobacco breeding programs.
REFERENCES
Espino M, Espino E. Catálogo de variedades comerciales de tabaco cubano. La Habana, Cuba: Instituto de Investigaciones del Tabaco, Grupo Empresarial de Tabaco de Cuba, Ministerio de la Agricultura; 2012.
González AC, Toledo V. Comportamiento de las accesiones del género Nicotiana informadas como fuentes de resistencia frente a aislamientos cubanos de Phytophthora nicotianae Breda de Haan. Rev Protección Veg. 2019;34(1):1-7.
García H, Castro MdC, Oliva O, EnriquezG. ‘BHmN’Variedad de tabaco(Nicotiana tabacum L.) resistente al mohoazul (Peronospora hyoscyami de Bary f.Sp. Tabacina) desde estadios tempranosobtenida por nueva estrategia de seleccióncon su androestéril. Cuba Tabaco2010;11(2):17-23.
Singh B, Singh AK. Marker-assisted plantbreeding: principles and practices. NewDelhi: Springer India; 2015.
Laitinen RA, Nikoloski Z. Geneticbasis of plasticity in plants. J Exp Bot.2019;70(3):739-45.
Melese L. Marker assisted selection incomparison to conventional plant breeding:review article. Agric Res Technol.2018;14(2):1-10.
Tshikunde NM, Mashilo J, Shimelis H,Odindo A. Agronomic and physiologicaltraits, and associated Quantitative TraitLoci (QTL) affecting yield response in wheat(Triticum aestivum L.): A review. Front PlantSci. 2019;10:01428.
Liu R, Lu J, Zhou M, Zheng S, Liu Z,Zhang C, et al. Developing stripe rustresistant wheat (Triticum aestivum L.) lineswith gene pyramiding strategy and markerassistedselection. Genet Resour Crop Evol.2020;67(2):381-91.
Kumar A, Sandhu N, Dixit S, Yadav S,Swamy B, Shamsudin NAAJR. Markerassistedselection strategy to pyramid twoor more QTLs for quantitative trait-grainyield under drought. Rice. 2018;11(1):35.
Bakaher N. Genetic markers in tobacco,usage for map development, diversitystudies, and quantitative trait loci analysis.In: Ivanov N, Sierro N, Peitsch M (eds). Thetobacco plant genome. Compendium ofPlant Genomes. Cham: Springer NatureSwitzerland AG; 2020. p. 43-9.
Yang S, Li D, Fisher AJ, Pramod S, XuD. CORESTA Guide N 16; 2019.
Acanda Y, Rodríguez L, García H. Laselección asistida por marcadores en elmejoramiento genético del tabaco. CubaTabaco. 2008;9(2):46-51.
Johnson J. Breeding tobacco for resistanceto Thielavia root-rot, US Dept AgrTech Bull. 1930;11:175.
Knoche K, Clayton M, Fulton R.Comparison of resistance in tobacco toPseudomonas syringae pv. tabaci races0 and 1 by infectivity titrations and bacterialmultiplication. Phytopathology.1987;77(9):1364-8.
Milla S, Levin J, Lewis R, Rufty R.RAPD and SCAR markers linked to anintrogressed gene conditioning resistanceto Peronospora tabacina DB Adam. intobacco. Crop Sci. 2005;45(6):2346-54.
Cole D, Mapuranga N. Reaction ofIndicator tobacco cultivars to races ofPseudomonas syringae pv. tabaciTox+.Beiträge zur Tabakforschung Int/ContribTobacco Res. 2001;19(7):353-9.
Trojak-Goluch A, Laskowska D, KursaK. Morphological and chemical characteristicsof doubled haploids of fluecuredtobacco combining resistance toThielaviopsis basicola and TSWV. Breed Sci.2016;299:293-9.
Lewis R, Milla S, Levin J. Molecular andgenetic characterization of Nicotiana glutinosaL. chromosome segments in tobaccomosaic virus-resistant tobacco accessions.Crop Sci. 2005;45(6):2355-62.
Wu X, Li D, Bao Y, Zaitlin D, Miller R,Yang S. Genetic dissection of disease resistanceto the blue mold pathogen, Peronosporatabacina, in tobacco. Agronomy. 2015;5(4):555-68.
Li B-C, Bass W, Cornelius P. Resistanceto tobacco black shank in Nicotiana species.Crop Sci. 2006;46(2):554-60.
Borrás-Hidalgo O, Thomma BP, CollazoC, Chacón O, Borroto CJ, Ayra C, et al. EIL2transcription factor and glutathione synthetaseare required for defense of tobaccoagainst tobacco blue mold. Mol Plant-Microbe Interact. 2006;19(4):399-406.
García M, Andino V. Tecnología debandejas flotantes en la producciónde plántulas de tabaco en Cuba. CubaTabaco. 2002;3(1):30-3.
Julio E, Verrier J, De Borne F. Developmentof SCAR markers linked to threedisease resistances based on AFLP withinNicotiana tabacum L. Theor Appl Genet.2006;112(2):335-46.
Drake K, Lewis RS. An introgressed Nicotianarustica genomic region confers resistanceto Phytophthora nicotianae in cultivatedtobacco. Crop Sci. 2013;53(4):1366-74.
Lewis RS, Rose C. Agronomic performanceof tobacco mosaic virus-resistant tobacco linesand hybrids possessing the resistance gene Nintrogressed on different chromosomes. CropSci. 2010;50(4):1339-47.
Pollok JR, Johnson CS, Eisenback J, ReedTD. Reproduction of Meloidogyne incognitaRace 3 on flue-cured tobacco homozygousfor Rk1 and/or Rk2 resistance genes. JNematol. 2016;48(2):79.
Julio E, Cotucheau J, Decorps C, VolpattiR, Sentenac C, Candresse T, et al. A eukaryotictranslation initiation factor 4E (eIF4E) isresponsible for the “va” tobacco recessiveresistance to potyviruses. Plant Mol Biol Rep.2015;33(3):609-23.
Díaz M, Gil M, Mena EC. ‘San Luis 22’:Nueva variedad de tabaco Virginia resistentea las principales enfermedades y de altopotencial de rendimiento. Cuba Tabaco.2008;9(2):22-6.
Knapp S, Chase MW, Clarkson JJ. Nomenclaturalchanges and a new sectionalclassification in Nicotiana (Solanaceae).Taxon. 2004;53(1):73-82.
Vontimitta V, Lewis RS. Mapping ofquantitative trait loci affecting resistance toPhytophthora nicotianae in tobacco (Nicotianatabacum L.) line Beinhart-1000. MolBreed. 2012;29(1):89-98.
Ma JM, Heim C, Humphry M, Nifong J, LewisRS. Genetic analysis of Phn7.1, a major QTLconferring partial resistance to Phytophthoranicotianae in Nicotiana tabacum. Mol Breed.2019;39(1):11.
Xiao B, Drake K, Vontimitta V, Tong Z,Zhang X, Li M-y, et al. Location of genomicregions contributing to Phytophthora nicotianaeresistance in tobacco cultivar Florida301. Crop Sci. 2013;53(2):473-81.
Valleau W, Stokes G, Johnson E. Nineyears’ experience with the Nicotiana longiflorafactor for resistance to Phytophthora parasiticavar. nicotianae in the control of black shank.Tobacco. 1960;150(20).
Apple JL. Transfer of resistance toblack shank (Phytophtora parasitica var.nicotianae from Nicotiana plumbaginifoliato Nicotiana tabacum. Phytopatology. 1962;52(1):351-4.
Nelson R, Wiesner-Hanks T, Wisser R,Balint-Kurti P. Navigating complexity to breeddisease-resistant crops. Nat Rev Genet.2018;19(1):21.
Nifong J, Nicholson J, Shew H, Lewis R.Variability for resistance to Phytophthora nicotianaewithin a collection of Nicotiana rusticaaccessions. Plant Dis. 2011;95(11):1443-7.
Johnson E, Wolff M, Wernsman E, AtchleyW, Shew H. Origin of the black shank resistancegene, Ph, in tobacco cultivar Coker371-Gold. Plant Dis. 2002;86(10):1080-4.
Martínez-Pacheco J, Castro-FérnandezMdC, González-Toledo A, Toledo-Sampedro V.El gen Php no es una fuente de resistencia enel tabaco cubano. Cult Trop. 2019;40(1):e12.
Carlson SR, Wolff MAF, Shew H, WernsmanE. Inheritance of resistance to race 0 of Phytophthoraparasitica var. nicotianae from theflue-cured tobacco cultivar Coker 371-Gold.Plant Dis. 1997;81(11):1269-74.
Bao Y, Ding N, Qin Q, Wu X, MartinezN, Miller R, et al. Genetic mapping of the Phgene conferring disease resistance to blackshank in tobacco. Mol Breed. 2019;39(9):122.
Dluge KL. Application of genomic approachestoward characterization of commerciallyimportant tobacco loci. North Carolina:North Carolina State University; 2017.
Silva YK, Muiño BL. Análisis de la virulenciaen seis aislados de Peronospora hyoscyamif. Sp tabacina, agente causal del Moho azuldel tabaco. Cuba Tabaco. 2012;13(2):3-11.
McCorkle KL, Drake-Stowe K, Lewis RS,Shew D. Characterization of Phytophthoranicotianae resistance conferred by the introgressedNicotiana rustica region, Wz, influe-cured tobacco. Plant Dis. 2018;102(2):309-17.
Crespo JA, Dominguez M, Torrecilla G.Comportamiento de variedades de tabaco yespecies del genero Nicotiana al Virus delgrabado del tabaco, Virus del mosaico deltabaco y Virus Y de la papa. Cuba Tabaco.2012;13(1):22-7.
Lewis R, Linger L, Wolff M, WernsmanE. The negative influence of N-mediatedTMV resistance on yield in tobacco: linkagedrag versus pleiotropy. Theor Appl Genet.2007;115(2):169-78.
Colak-Ates A, Dincer D, Ata A. Determinationof the interaction between FusariumCrown-Root Rot Disease and Root-KnotNematode on tomato genotypes. FreseniusEnviron Bull. 2018;27:6785-91.
Kumar N, Bhatt J, Sharma RL. Interactionbetween Meloidogyne incognita with Fusariumoxysporum f. sp. lycpersici on tomato.Int J Curr Microbiol Appl Sci. 2017;6:1770-6.
Sumbul A, Mahmood I. Interactive effectof Meloidogyne incognita and Macrophominaphaseolina on the development of root–rotdisease complex in relation to growth andphysiological attributes of chickpea. HellenicPlant Protect J. 2020;13(1):13-23.
Ros C, Lacasa CM, Martínez V, BielzaP, Lacasa A. Response of pepper rootstocksto co-infection of Meloidogyne incognitaand Phytophthora spp. Eur J Horticult Sci.2014;79(1):22-8.
Lewis R. Evaluation of Nicotiana tabacumgenotypes possessing Nicotiana africanaderivedgenetic tolerance to Potato Virus Y.Crop Sci. 2007;47(5):1975-84.