2022, Number 4
<< Back Next >>
Rev Mex Anest 2022; 45 (4)
Awareness of consciousness during anesthesia
Suárez-Morales M, Mendoza-Popoca CÚ
Language: Spanish
References: 70
Page: 257-267
PDF size: 532.25 Kb.
ABSTRACT
To define consciousness per se, involves a great difficulty because of its essence and the huge complexity regarding the great number of its components and the processes within. Consciousness, as a human characteristic, has been matter of large researching not only through a scientific approach, but also from the perspective of philosophic, religious, ethics investigations among others, including the distinction between consciousness and awareness. The trouble to define the foundation of consciousness implies a great challenge to get to know, what is happening during the anesthesia period. Through the understanding that has been accomplished by way of investigations concerning the different and complex functions of diverse neural structures such as the brain stem reticular formation, the thalamus, some parts of the striatum and the cerebral cortex among others, how they become connected by the neuronal nets who are compounded by nodes that have not only specific but a wide array of functions, capable of interconnect all these encephalic structures, even though they are far away, we know now with a good amount of certainty, where, how and how much the integrity of consciousness can be affected as a consequence of the different anesthetics effect.
REFERENCES
Northoff G, Huang Z. How do the brain's time and space mediate consciousness and its different dimensions? Temporo-spatial theory of consciousness (TTC). Neurosci Biobehav Rev. 2017;80:630-645.
Bremer F. Cerveau isolé et physiologie du sommeil. CR Soc Biol (Paris). 1935;118:1235-1241.
Moruzzi G, Magoun HW. Brain stem reticular formation and activation of EEG. Electroencephalogr Clin Neurophysiol. 1949 ; 1: 455-473.
Satpute AB, Kragel PA, Barret LF, Wagner TD, Bianciardi M. Deconstructing arousal into wakeful, autonomic and affective varieties. Neurosci Lett. 2019;693:19-28.
Garcia-Rill E, D'Onofrio S, Mahaffey S. Bottom-up gamma: the pedunculopontine nucleus and reticular activating system. Transl Brain Rhythm. 2016;1:49-53.
Saper CB, Chou TC, Scammell TE. The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci. 2001;24:726-731.
Yuan J, Luo Z, Zhang Y, Zhang Y, Wang Y, Cao S, et al. GABAergic ventrolateral pre-optic nucleus neurons are involved in the mediation of the anesthetic hypnosis induced by propofol. Mol Med Rep. 2017;16:3179-3186.
Hindman J, Bowren MD, Bruss J, Wright B, Geerling JC, Boes AD. Thalamic strokes that severely impair arousal extend into the brainstem. Ann Neurol. 2018;84:926-930.
Rikhye RV, Wimmer RD, Halassa MM. Toward an integrative theory of thalamic function. Annu Rev Neurosci. 2018;41:163-183.
Perea-Bartolomé MV, Ladera-Fernández V. El tálamo: aspectos funcionales. Rev Neurol. 2004;38:687-693.
Jones E. Corticothalamic and thalamocortical interactions. In: Schmidt R, Willis W (eds). Encyclopedia of pain. Berlin, Heidelberg: Springer; 2007. pp. 478-481. doi: 10.1007/978-3-540-29805-2_901.
Shine JM. The thalamus integrates the macrosystems of the brain to facilitate complex, adaptive brain network dynamics. Prog Neurobiol. 2021;199:101951.
Aru J, Suzuki M, Rutiku R, Larkum ME, Bachmann T. Coupling the State and contents of consciousness. Front Syst Neurosci. 2019;13:43.
Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Andryk S, Dooley GJ, et al. Thalamus modulates consciousness via layer-specific control of cortex. Neuron. 2020;106:66-75.
Honjoh S, Sasi S, Schiereck SS, Nagai H, Tononi G, Cirelli C. Regulation of cortical activity and arousal by the matrix cells of the ventromedial thalamic nucleus. Nat. Commun. 2018;9:2100. doi: 10.1038/s41467-018-04497-x.
Afrasiabi M, Redinbaugh MJ, Phillips JM et al. Consciousness depends on integration between parietal cortex, striatum and thalamus. Cell Syst. 2021;12: 363-373.
Pinault D. The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev. 2004;46:1-31.
Crabtree JW. Functional diversity of thalamic reticular subnetworks. Front Syst Neurosci. 2018;12:41. doi: 10.3389/fnsys.2018.00041.
Gottschalk A, Miotke SA. Volatile anesthetic action in a computational model of the thalamic reticular nucleus. Anesthesiology. 2009;110:964-966.
Min BK. A thalamic reticular networking model of consciousness. Theor Biol Med Model. 2010;7:10.
Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K; WU-Minn HCP Consortium. The WU-Minn human connectome project: an overview. Neuroimage. 2013;80:62-79.
Glasser MF, Coalson TS, Robinson E, Hacker CD, Harwell J, Yacoub E, et al. A multi-modal parcellation of human cerebral cortex. Nature. 2016;536:171-178.
Grill-Spector K, Malach R. The human visual cortex. Annu Rev Neurosci. 2004;27:649-677.
Brewer AA, Barton B. Visual field map organization in human visual cortex. In: Molotchnikoff S, Rouat J, editors. Visual cortex-current status and perspectives. London: IntechOpen; 2012. Available in: http://dx.doi.org/10.5772/51914
Humphries MD, Gurney K. Network 'small-world-ness': a quantitative method for determining canonical network equivalence. PLoS One. 2008;3:e0002051. doi: 10.1371/journal.pone.0002051.
Stanley ML, Moussa MN, Paolini BM, Lyday RG, Burdette JH, Laurienti PJ. Defining nodes in complex brain networks. Front Comput Neurosci. 2013;7:169. doi: 10.3389/fncom.2013.00169.
Sporns O. Graph theory methods: applications in brain networks. Dialogues Clin Neurosci. 2018;20:111-121.
van den Heuvel MP, Sporns O. Rich-club organization of the human connectome. J Neurosci. 2011;31:15775-15786.
Griffa A, Van den Heuvel MP. Rich-club neurocircuitry: function, evolution and vulnerability. Dialogues Clin Neurosci. 2018;20:121-132.
Collin G, Sporns O, Mandl RC, van den Heuvel MP. Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. 2014;24:2258-2267.
Bassett DS, Khambhati AN, Grafton ST. Emerging frontiers of neuroengineering: a network science of brain connectivity. Annu Rev Biomed Eng. 2017;19:327-352.
Xu Y, He Y, Bi Y. A tri-network model of human semantic processing. Front Psychol. 2017;8:1538.
Demertzi A, Soddu A, Laureys S. Consciousness supporting networks. Curr Opin Neurobiol. 2013;23:239-244.
Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537-541.
Uddin LQ, Yeo BTT, Spreng RN. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 2019;32:926-942.
Edelman GM, Gally JA, Baars BJ. Biology of consciousness. Front Psychol. 2011;2:4. doi: 10.3389/fpsyg.2011.00004.
Crick F, Koch C. Towards a neurobiological theory of consciousness. Seminars in Neuroscience. 1990;2:263-275.
Dehaene S, Naccache L. Towards a cognitive neuroscience of consciousness: Basic evidence and the workspace framework. Cognition. 2001;79:1-37.
Whyte CJ. Integrating the global neuronal workspace into the framework of predictive processing: Towards a working hypothesis. Conscious Cogn. 2019;73:102763.
Sattin D, Magnani FG, Bartesaghi L, Caputo M, Fittipaldo AV, Cacciatore M, et al. Theorical models of consciousness: a scoping review. Brain Sci. 2021;11:535.
Dehaene S, Changeux JP. Experimental and theorical approaches to conscious processing. Neuron. 2011;70:200-227.
Northoff G, Lamme V. Neural signs and mechanisms of consciousness: Is there a potential convergence of theories of consciousness in sight? Neurosci Biobehav Rev. 2020;118:568-587.
Aru J, Suzuki M, Larkum ME. Cellular mechanisms of conscious processing. Trends Cogn Sci. 2020;24:814-825.
Mashour GA. Role of cortical feedback signalling in consciousness and anaesthetic-induced unconsciousness. Br J Anaesth. 2019;123:404-405.
Franks NP. Molecular targets underlying general anaesthesia. Br J Pharmacol. 2006;147(:S72-S81.
Velly LJ, Rey MF, Bruder NJ, Gouvitsos FA, Witjas T, Regis JM. Differential dynamic of action on cortical and subcortical structures of anesthetics agents during induction of anesthesia. Anesthesiology. 2007;107:202-212.
Lee U, Mashour GA. Role of networks science in the study of anesthetics state transitions. Anesthesiology. 2018;129:1029-1044.
Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced alpha-rhythm associated with loss of consciousness. Proc Natl Acad Sci U S A. 2010;107:22665-22670.
Akeju O, Westover B, Pavone KJ, Sampson AL, Hartnack KE, Brown EN, et al. Effects of sevoflurane and propofol on frontal electroencephalogram power and coherence. Anesthesiology. 2014;121:990-998.
White NS, Alkire MT. Impaired thalamocortical connectivity in humans during general anesthetic induced unconsciousness. Neuroimage. 2003;19:402-411.
Liu X, Lauer KK, Ward BD, Li SJ, Hudetz AG. Differential effects of deep sedation with propofol on the specific and nonspecific thalamocortical systems: a functional magnetic resonance imaging study. Anesthesiology. 2013;118:59-69.
Lee U, Ku S, Noh G, Baek S, Choi B, Mashour GS. Disruption of frontal- parietal communication by ketamine, propofol and sevoflurane. Anesthesiology. 2013;118:1264-1275.
Goodale MA. Transforming vision into action. Vision Res. 2011;51:1567-1587.
Hudetz AG, Vizuete JA, Imas OA. Desflurane selectively suppresses long-latency cortical neuronal response to flash in rat. Anesthesiology. 2009;111:231-239.
Murphy C, Krause B, Banks M. Selective effects of isoflurane on cortico-cortical feedback afferent responses in murine non primary neocortex. Br J Anaesth. 2019;123:488-496.
Suzuki M, Larkum ME. General anesthesia decouples cortical pyramidal neurons. Cell. 2020;180:666-676.
Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB, Woolrich MW, et al. Metastable brain waves. Nat Commun. 2019;10:1056.
Beim Graben P, Jimenez-Marin A, Diez I, Cortes JM, Desroches M, Rodrigues S. Metastable resting state brain dynamics. Front Comput Neurosci. 2019;13:62.
Hudson AE. Metastability of neuronal dynamics during general anesthesia: time for a change in our assumptions? Front Neural Circuits. 2017;11:58.
Li D, Vlisides PE, Kelz MB, Avidan MS, Mashour GA. Dynamic cortical connectivity during general anesthesia in healthy volunteers. Anesthesiology. 2019;130:870-884. doi: 10.3389/fncir.2017.00058.
Sigl JC, Chamoun NG. An introduction to biespectral analysis for the electroencephalogram. J Clin Monitor Comput. 1994;10:392-404.
Tasbihgou SR, Vogels MF, Absalom AR. Accidental awareness during general anaesthesia-a narrative review. Anaesthesia. 2018;73:112-122.
Myles PS, Leslie K, McNeil J, et al. Bispectral index monitoring to prevent awareness during anesthesia: the be aware randomized controlled trial. Lancet. 2004;363:1757-1763.
Avidan MS, Zhang L, Burnside BA, et al. Anesthesia awareness and the bispectral index. N Engl J Med. 2008;358:1097-1108.
Avidan MS, Jacobson E, Glick D, et al. Prevention of intraoperative awareness in high-risk surgical population. N Engl J Med. 2011;365:591-600.
Liang T, Wu F, Wang B, Mu F. PRISMA: accuracy of response entropy and biespectral index to predict the transition of consciousness during sevoflurane anesthesia. Medicine. 2021;100:e25718.
Fahy B, Chau D. The technology of processed electroencephalogram monitoring devices for assessment of depth of anesthesia. Anesth Analg. 2018;126:111-117.
Hagihira S, Takashina M, Mori T, Ueyama H, Mashimo T. Electroencephalographic bicoherence is sensitive to noxious stimuli during isoflurane or sevoflurane anesthesia. Anesthesiology. 2004;100:818-825.
Purdon PL, Pavone KJ, Akeju O, Smith AC, Sampson AL, Lee J, et al. The ageing brain: age-dependent changes in the electroencephalogram during propofol and sevoflurane general anaesthesia. Br J Anaesth. 2015;115:i46-i57.
Faivre N, Arzi A, Lunghi C, Salomon R. Consciousness is more than meets the eye: a call for a multisensory study of subjective experience. Neurosci Conscious. 2017;2017:nix003.