2021, Number 1
<< Back Next >>
Rev Cubana Pediatr 2021; 93 (1)
A model of study of renal tubular function that does not depend on the 24-hour urine collection
Salabarría GJR, Santana PS, Liriano RMR
Language: Spanish
References: 43
Page: 1-21
PDF size: 1267.18 Kb.
ABSTRACT
Introduction:
The morning urine sample assay may improve the study of tubular function in children and adolescents.
Objective:
Describe the tubulopathies diagnosed in children and adolescents after the trial of morning urine samples.
Methods:
A retrospective and analytical study was completed at the Renal Function´s Study Laboratory, in the Clinical Laboratory Service at "Juan Manuel Marquez" Teaching Pediatric Hospital, with 70 reports of tubular function made in morning urine samples of 56 testees (males: 50.0%; average age: 4.3 ± to 5.5 years; ages< 12 months: 41.1%) attended from 2015 to 2019 (both inclusive) containing glomerular filtration values, absolute and fractional urinary excretion of substances of interest, anionic gap, partial gas pressure, and titrable acidity, pH, density and osmolarity of relevant fluids. The results obtained were integrated into the case constructions of various tubulopathies.
Results:
Tubular function was preserved in 41.1% of the testees. Tubular immaturity explained the findings in two other children. Idiopathic hypercalciuria (16.0 %), nephrogenic diabetes insipidus (8.9%) and acute renal failure (5.3 %) were the most frequent findings. In 14 of the testees, 10 tubulopathies were diagnosed were through deficiency rickets, hypophosphatasia, Leigh's disease, Bartter syndrome, Dent disease and tubular acidosis I, II and IV.
Conclusions:
The tubular study with morning urine samples allows the diagnosis of important tubulopathies in the pediatric ages.
REFERENCES
Verbalis JG. Disorders of body water homeostasis. Best Pract Res Clin Endocrinol Metab. 2003;17:471-503.
Rondon Berrios H, Berl T. Physiology and pathophysiology of water homeostasis. Front Horm Res. 2019;52:8-23. doi: https://doi.org/10.1159/000493233.
Sands JM, Layton HE. Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol. 2014;76:387-409.
Wagner CA, Silva PHI, Bourgeois S. Molecular pathophysiology of acid-base disorders. Semin Nephrol. 2019;39:340-52.
Hart SGE. Assessment of renal injury in vivo. J Pharmacol Toxicol Meth. 2005;52:30-45.
Bagga A, Sinha A. Renal tubular acidosis. Indian J Pediatr .2020;87:733-44.
John KA, Cogswell ME, Campbell NR, Nowson CA, Legetic B, Hennis AJ, Patel SM. Accuracy and usefulness of select methods for assessing complete collectionof 24-hour urine: A systematic review. J Clin Hypertens. 2016;18:456-67.
Côté AM, Firoz T, Mattman A, Lam EM, von Dadelszen P, Magee LA. The 24-hour urine collection: Gold standard or historical practice? Am J Obstet Gynecol. 2008;199(6): 625-e1.
Johansson G, Bingham S, Vahter M. A method to compensate for incomplete 24-hour urine collections in nutritional epidemiology studies. Public Health Nutr.1999;2:587-91.
Santana Porbén S, Salabarría González JR, Liriano Ricabal MDR, Quiñones Vázquez S. On the urinary excretion of a substance as predicted from the substance-to-creatinine ratio. Eur J Clin Chem Clin Biochem. 2019;5(1):1-4. doi: http://doi:10.11648/j.ejcbs.20190501.11.
Blanco Mesa B, Santana Porbén S, Salabarría González JR. Importancia de los valores de proteinuria para el diagnóstico de la nefropatía asociada al lupus eritematoso sistémico. Rev Cubana Reumatol. 2018 [06/02/2020];20(3). Disponible en: http://scielo.sld.cu/scielo.php?pid=S1817-59962018000300001&script=sci_arttext&tlng=pt.
Quiñones-Vázquez S, Liriano-Ricabal MDR, Santana-Porbén S, Salabarría-González JR. Calcium-creatinine ratio in a morning urine sample for the estimation of hypercalciuria associated with non-glomerular hematuria observed in children and adolescents. Bol Med Hosp Infant Mex .2018;75:41-8.
García Arévalo L, Santana Porbén S. Nitrógeno ureico urinario estimado del índice de excreción urea-creatinina construido para una muestra única de orina. Rev Cubana Aliment Nutr (RCAN). 2015;25:314-26.
Rodríguez Peña Y, Santana Porbén S, Liriano Ricabal MDR, Salabarría González JR, Valdés Alonso MDC. Excreción urinaria de uratos en niños y adolescentes obesos aquejados de Síndrome Metabólico. JONNPR. 2020;5:307-28.
Santana Porbén S, Salabarría González JR. Herramientas informáticas para el cálculo de los indicadores de la función renal. En: Salabarría González JR, Santana Porbén S, editores. Laboratorio clínico y función renal. Madrid: Editorial EAE Académica Española; 2011. p. 125-36.
Schwartz GJ, Haycock GB, Edelmann CM, Spitzer Jr A. A simple estimate of glomerular filtration rate in children derived from body length and plasma creatinine. Pediatrics .1976;58:259-63.
Pottel H, Hoste L, Dubourg L, Ebert N, Schaeffner E, Eriksen BO; et al. An estimated glomerular filtration rate equation for the full age spectrum. Nephrol Dial Transplant. 2016;31:798-806.
Zappitelli M, Parvex P, Joseph L, Paradis G, Grey V, Lau S, Bell L. Derivation and validation of cystatin C-based prediction equations for GFR in children. Am J Kidney Dis. 2006;48:221-30.
Pottel H, Delanaye P, Schaeffner E, Dubourg L, Eriksen BO, Melsom T; et al. Estimating glomerular filtration rate for the full age spectrum from serum creatinine and cystatin C. Nephrol Dial Transplant. 2017;32:497-507.
Bacallao Méndez R. Exploración de la función renal. La Habana: Editorial Ciencias Médicas; 2018.
Ryan LE, Ing SW. Idiopathic hypercalciuria: Can we prevent stones and protect bones. Cleveland Clin J Med. 2018;85:47-54.
Coe FL, Worcester EM, Evan AP. Idiopathic hypercalciuria and formation of calcium renal stones. Nat Rev Nephrol. 2016;12:519-33.
Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11:576-88.
Kavanagh C, Uy NS. Nephrogenic Diabetes insipidus. Pediatr Clin North Am. 2019;66:227-34. doi: https://doi.org/10.1016/j.pcl.2018.09.006.
Dalmau AC, Martínez-Baylach J, del Castillo MT, Voss D, Martín RD. Raquitismo carencial: Formas de presentación diferentes para una misma entidad fisiopatogénica emergente. Acta Pediátr Esp. 2012;70:221-5.
Özkan B. Nutritional rickets. J Clin ResPediatr Endocrinol. 2010;2:137-43.
Ehlayel AM, Copelovitch L. Update on Dent disease. Pediatr Clin. 2019;66:169-78.
Pook MA, Wrong O, Wooding C, Norden AG, Feest TG, Thakker RV. Dent's disease, a renal Fanconi syndrome with nephrocalcinosis and kidney stones, is associated with a microdeletion involving DXS255 and maps to Xp11.22. Human Mol Genet. 1993;2:2129-34.
Hodgin JB, Corey HE, Kaplan BS, D'Agati VD. Dent disease presenting as partial Fanconi syndrome and hypercalciuria. Kidney Int. 2008;73:1320-3.
Corey HE, Eckstein D. Renal tubular acidosis. En: Ronco C, Bellomo R, Kellum JA, Ricci Z, editors. Critical Care Nephrology. Third ed. Philadelphia: Elsevier; 2019. p.405-8. doi: https://doi.org/10.1016/B978-0-323-44942-7.00068-6.
Soares SBM, de Menezes Silva LAW, de Carvalho Mrad FC, Simoes e Silva AC. Distal renal tubular acidosis: Genetic causes and management. World J Pediatr. 2019;15:422-31. doi: https://doi.org/10.1007/s12519-019-00260-4.
Haque SK, Ariceta G, Batlle D. Proximal renal tubular acidosis: A not so rare disorder of multiple etiologies. Nephrol Dial Transplant. 2012;27:4273-87.
Karet FE. Mechanisms in hyperkalemic renal tubular acidosis. J Am Soc Nephrol. 2009;20:251-4.
Amirlak I, Dawson KP. Bartter syndrome: An overview. Quarter J Med. 2000;93:207-15.
Favero M, Calò LA, Schiavon F, Punzi L. Bartter's and Gitelman's diseases. Best Pract Res Clin Rheumatol. 2011;25:637-48.
Thakore P, Anderson M, Yosypiv IV. Classic Bartter syndrome: A cause of severe hypokalemic metabolic alkalosis. ClinPediatr. 2019;58:1557-61.
Kretzschmar HA, DeArmond SJ, Koch TK, Patel MS, Newth CJ, Schmidt KA, Packman S. Pyruvate dehydrogenase complex deficiency as a cause of subacute necrotizing encephalopathy (Leigh disease). Pediatrics.1987;79:370-3.
Morris AAM, Leonard JV, Brown GK, Bidouki SK, Bindoff LA, Turnbull DM; et al. Deficiency of respiratory chain complex I is a common cause of Leigh disease. Ann Neurol. 1996;40:25-30.
Finsterer J, Scorza F. Renal manifestations of primary mitochondrial disorders. Biomed Rep. 2017;6:487-94.
Emma F, Salviati L. Mitochondrial cytopathies and the kidney. Néphrol Thér. 2017;13(Suppl 1):S23-S28. doi: https://doi.org/10.1016/j.nephro.2017.01.014.
Martos-Moreno GA, Calzada J, Couce ML, Argente J. Hipofosfatasia: Manifestaciones clínicas, recomendaciones diagnósticas y opciones terapéuticas. An Pediatr. 2018;88:356-61.
Luna Ceballo E, Domínguez Pérez ME, Álvarez Núñez R. Hipofosfatasia: Presentación de un caso. Rev Cubana Ortoped Traumatol. 2001;15:87-9.
Awad H, El-Barbary M, Imam S, El-Safty I. Evaluation of renal glomerular and tubular functional and structural integrity in neonates. Am J Med Sci. 2002;324:261-6.