2021, Number 1
<< Back Next >>
Rev Cub Oftal 2021; 34 (1)
Current therapies in corneal vascularization
Hernández FY, Pérez PZ, León RY, Moreno RME, Brizuela CY
Language: Spanish
References: 23
Page: 1-17
PDF size: 336.82 Kb.
ABSTRACT
A clear cornea is essential for excellent vision; that is why it is avascular. But there are conditions that favor the invasion of neovessels into the corneal tissue, such as infections, inflammation, hypoxia, trauma, among others, which reduce visual quality and in some cases even lose it. Corneal neovascularization represents a major public health problem worldwide. An automated search was carried out in order to find updated information on the treatment of corneal neovascularization, for which the infomed platform was used. The information was summarized in the final document. On the subject, there is notable progress in understanding the pathogenesis, improvement and safety of new treatments. Corticosteroids and anti-VEGF (vascular endothelial growth factor) agents continue to be the first-line drugs, used mainly to prevent the formation of new vessels, not for mature vessels, where the best option is surgical or combined procedures. More experimental studies are needed; and the existing ones should be used in clinical trials to investigate the safe dose and side effects, and thus find radical and more effective therapies that give patients with corneal neovascularization the hope of better visual quality.
REFERENCES
Le Q, Xu J, Deng SX. The diagnosis of limbal stem cell deficiency. Ocul Surf. 2018;16(1):58-69.
Sharif Z, Sharif W. Corneal neovascularization: updates on pathophysiology, investigations & management. Rom J Ophthalmol. 2019;63(1):15-22.
Roshandel D, Eslani M, Baradaran-Rafii A, Cheung AY, Kurji K, Jabbehdari S, et al. Current and emerging therapies for corneal neovascularization. Ocul Surf [internet]. 2018 [acceso: 05/05/2020];16(4):398-414. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/29908870
Presta M, Foglio E, Churruca Schuind A, Ronca R. Long Pentraxin-3 Modulates the Angiogenic Activity of Fibroblast Growth Factor-2. Front Immunol. 2018 acceso: 08/05/2020;9. Disponible en: Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187966/
Nominato LF, Dias AC, Dias LC, Fantucci MZ, Mendes da Silva LEC, Murashima AA, et al. Prevention of corneal neovascularization by adenovirus encoding human vascular endothelial growth factor soluble receptor (s-VEGFR1) in lacrimal gland. Invest Ophthalmol. 2018;59(15):6036-44.
Xu HL, Tong MQ, Wang LF, Chen R, Li XZ, Sohawon Y, et al. Thiolated gamma-polyglutamic acid as a bioadhesive hydrogel-forming material: evaluation of gelation, bioadhesive properties and sustained release of KGF in the repair of injured corneas. Biomater Sci. 2019;7(6):2582-99.
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From fundamentals to Applications. Adv Healthc Mater. 2019;8(15):1.
Mukwaya A, Jensen L, Peebo B, Lagali N. MicroRNAs in the cornea: role and implications for treatment of corneal neovascularization. Ocul Surf. 2019;17(3):400-11.
Baradaran-Rafii A, Ashnagar A, Heidari Keshel S, Jabbehdari S, Baradaran-Rafii G. Regression of corneal neovascularization: adiponectin versus bevacizumab eye drops. Eur J Ophthalmol. 2019;10:1177-206.
Sun JG, Jiang Q, Zhang XP, Shan K, Liu BH, Zhao C, et al. Mesoporous silica nanoparticles as a delivery system for improving antiangiogenic therapy Int J Nanomed. 2019;14:1489-501.
Bock F, Cursiefen C. Corneal Angiogenesis and Lymphangiogenesis. En: Colby K, Dana R. Foundations of Corneal Disease. Springer Nature Switzerland AG; 2020. p. 249-62.
Chen M, Bao L, Zhao M, Cao J, Zheng H. Progress in Research on the Role of FGF in the Formation and Treatment of Corneal Neovascularization. Front Pharmacol internet. 2020 acceso: 08/05/2020;11. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7052042/
Sumana R. Therapeutic Strategies for Corneal Wound Angiogenesis. Curr Pathobiol Rep. 2020;8:15-24.
Zhang J, Wang S, He Y, Yao B, Zhang Y. Regulation of matrix metalloproteinases 2 and 9 in corneal neovascularization. Chem Biol Drug Des internet. 2019 acceso: 15/05/2020;95(5). Disponible en: https://sci-hub.se/https://doi.org/10.1111/cbdd.13529
Yildirim H, Aydemir O, Balbaba M, Özercan IH, Ilhan N. Comparison of the effect of topical bevacizumab and sorafenib in experimental corneal neovascularization. Cutaneous and Ocular Toxicology Internet. 2020 acceso: 08/05/2020. Disponible en: https://www.tandfonline.com/loi/icot20
Feizi S. Corneal Angiogenesis: Etiologies, Complications and Management. En: Simionescu D, Simionescu A. Physiologic and Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy. Croatia: SPi Global; 2017. p. 57-76.
Hou Y, Nhat V, Le H, Tóth G, Siebelmann S, Horstmann J, et al. UV light crosslinking regresses mature corneal blood and lymphatic vessels and promotes subsequent high-risk corneal transplant survival. Am J Transplant internet. 2018 acceso: 18/05/2020;18(12):2873-84. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282984/
Zhu Y, Li L, Reinach PS, Li Y, Ge Ch, Qu J, et al. Corneal Collagen Cross-Linking With Riboflavin and UVA Regulates Hemangiogenesis and Lymphangiogenesis in Rats. Invest Ophthalmol Vis Sci internet. 2018 acceso: 08/05/2020;59:3702-12. Disponible en: https://iovs.arvojournals.org/article.aspx?articleid=2694713
Feizi S, Azari A, Safapour S. Therapeutic approaches for corneal neovascularization. Eye Vis. 2017 acceso: 08/05/2020;28. Disponible en: https://eandv.biomedcentral.com/articles/10.1186/s40662-017-0094-6
Hung le VN, Hou Y, Bock F, Cursiefen C. Supplemental Anti Vegf A-Therapy Prevents Rebound Neovascularisation after Fine Needle Diathermy Treatment to Regress Pathological Corneal (LYMPH) Angiogenesis. Scient Rep internet. 2020 acceso: 08/05/2020;10. Disponible en: https://www.nature.com/articles/s41598-020-60705-z
Hos D, Hung Le VN, Hellmich M, Siebelmann S, Roters S, Bachmann B, et al. Risk of Corneal Graft Rejection After High-risk Keratoplasty Following Fine-needle Vessel Coagulation of Corneal Neovascularization Combined With Bevacizumab: A Pilot Study. Transpl Direct internet. 2019 acceso: 19/05/2020;5(5). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6511442
Lacorzanaa J. Membrana amniótica, aplicaciones clínicas e ingeniería tisular. Revisión de su uso oftalmológico. Arch Soc Esp Oftalmol. 2020;95(1):15-23.
Cheung AY, Sarnicola E, Holland EJ. Long-term ocular surface stability in conjunctival limbal autograft donor eyes. Cornea. 2017;36(9):1031- 5.