2021, Number 1
Next >>
Rev Cubana Neurol Neurocir 2021; 11 (1)
Dysmorphic variations in primary autism
Quintana HD, Lantigua CA, Tamargo BTO, Tasé VD, Calixto RY, Dorta GD
Language: Spanish
References: 31
Page: 1-20
PDF size: 311.49 Kb.
ABSTRACT
Objective: To dysmorphologically analyze the characteristics of children with primary autism.
Methods: A matched case-control study was carried out in 126 children with primary autism, who were assisted at the National Reference Service for Medical Genetics, at Juan Manuel Márquez Pediatric Teaching Hospital in Havana, and at the Provincial Consultation of Neurodevelopment, in Mayabeque, from October 2014 to September 2019. The variables studied included dysmorphic features, number of dysmorphies, and anatomical regions. The statistical analysis, measures of frequencies and association were used.
Results: 21% of the cases were dysmorphic, while 8.7% of the control cases had this category. 58.8% of the female subjects and 43.1% of the male ones had dysmorphia. In these cases, dysmorphia predominated in the head - neck region (62.7%). Sixty-six different dysmorphies were described; macrocephaly was the most frequent one in cases (42.9%) and control cases (16.7%). An association between the number of dysmorphs and the diagnosis of primary autism was demonstrated with an OR = 1,994; 95% CI: 1.613-2.463. Head-neck and integumentary alterations were associated with primary autism (OR = 5,750 and OR = 2,174, respectively).
Conclusions: The evidence suggests that dysmorphic features are more frequent in children with primary autism than in neurotypical control cases, mainly those of the head-neck and integument regions. The probability of having this disorder increases as the number of dysmorphies increases.
REFERENCES
American Psychiatric Association. Diagnostic and statistical manual of mental disorders. 5 ed. Washington DC: American Psychiatric Association; 2013 [citado: 19/09/2020]. Disponible en: https://www.appi.org/Diagnostic_and_Statistical_Manual_of_Mental_Disorders_DSM-5_Fifth_Edition
Tordjman S, Somogyi E, Coulon N, Kermarrec S, Cohen D, Bronsard G, et al. Gene × Environment Interactions in Autism Spectrum Disorders: Role of Epigenetic Mechanisms. Front Psychiatry. 2014 [citado: 19/09/2020];5:53. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4120683/pdf/fpsyt-05-00053.pdf
Ozgen H, Hellemann GS, Stellato RK, Lahuis B, van Daalen E, Staal WG, et al. Morphological Features in Children with Autism Spectrum Disorders: A Matched Case–Control Study. J Autism Dev Disord. 2011 [citado: 18/09/2020];41(1):23-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3005119/pdf/10803_2010_Article_1018.pdf
Timonen-Soivio L, Vanhala R, Malm H, Leivonen S, Jokiranta E, Hinkka-Yli-Salomäki S, et al. The association between congenital anomalies and autism spectrum disorders in a Finnish national birth cohort. Dev Med Child Neurol. 2015 [citado: 17/09/2020];57(1):75-80. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4267988/pdf/nihms622376.pdf
Valdés Martín S, Gómez Vasallo A, Báez Martínez JM. Temas de pediatría. 2 ed. La Habana: Editorial Ciencias Médicas; 2011.
Lyons Jones, K. Smith. Patrones reconocibles de malformaciones humanas. 6 ed. Madrid: Elsevier; 2007.
Angkustsiri K, Krakowiak P, Moghaddam B, Wardinsky T, Gardner J, Kalamkarian N, et al. Minor Physical Anomalies in Children with Autism Spectrum Disorders. Autism. 2011 [citado: 22/09/2020];15(6):746-60. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4245022/
Cheng H, Chang CC, Chang YC, Lee WK, Tzang RF. A Pilot Study: Association between Minor Physical Anomalies in Childhood and Future Mental Problems. Psychiatry Investig. 2014 [citado: 20/09/2020];11(3):228-31. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4124179/pdf/pi-11-228.pdf
Miles JH. Autism spectrum disorders-a genetics review. Genet Med. 2011 [citado: 17/09/2020];13(4):278-94. Disponible en: https://www.nature.com/articles/gim9201151.pdf
Manouilenko I, Eriksson JM, Humble MB, Bejerot S. Minor Physical Anomalies in Adults with Autism Spectrum Disorder and Healthy Controls. Autism Res Treat. 2014 [citado: 19/09/2020];2014:743482. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982266/pdf/AURT2014-743482.pdf
Albores Gallo L, Hernández Guzmán L, Díaz Pichardo JA, Cortes Hernández B. Dificultades en la evaluación y diagnóstico del autismo. Una discusión. Salud Mental. 2008 [citado: 18/09/2020];31(1):37-44. Disponible en: http://www.medigraphic.com/pdfs/salmen/sam-2008/sam081f.pdf
Lokeyj, Hannan AJ, Craig JM. The Role of Epigenetic Change in Autism Spectrum Disorders. Front Neurol. 2015 [citado: 19/09/2020];6:107. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443738/
Karimi P, Kamali E, Mousavi SM, Karahmadi M. Environmental factors influencing the risk of autism. J Res Med Sci. 2017 [citado: 19/09/2020];22:27. Disponible en: http://www.jmsjournal.net/temp/JResMedSci22127-600887_164128.pdf
Boutrus M, Maybery MT, Alvares GA, Tan DW, Varcin KJ. Whitehouse AJO Investigating Facial Phenotype in Autism Spectrum Conditions: The Importance of a Hypothesis Driven Approach. Autism Res. 2017 [citado: 19/09/2020];10:1910-8. Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/28816000
Tripi G, Roux S, Matranga D, Maniscalco L, Glorioso P, Bonnet-Brilhault F, et al. Cranio-Facial Characteristics in Children with Autism Spectrum Disorders (ASD). J Clin Med. 2019 [citado: 19/09/2020];8(5). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6571684/
Hobert JA, Embacher R, Mester JL, Frazier TW, Eng C. Biochemical screening and PTEN mutation analysis in individuals with autism spectrum disorders and macrocephaly. Eur J Hum Genet. 2014 [citado: 19/09/2020];22(2):273-6. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3895634/pdf/ejhg2013114a.pdf
Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell. 2015 [citado: 19/09/2020];162(2):375-90. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4519016/
Lee BH, Smith T, Paciorkowski AR. Autism Spectrum Disorder and Epilepsy: disorders with a shared biology. Epilepsy Behav. 2015 [citado: 19/09/2020];47:191-201. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4475437/pdf/nihms683332.pdf
Sánchez-Alegría K, Flores-León M, Avila-Muñoz E, Rodríguez-Corona N, Arias C. PI3K Signaling in Neurons: A Central Node for the Control of Multiple Functions. Int J Mol Sci. 2018;19(12):3725. Doi: 10.3390/ijms19123725.
Chen CJ, Sgritta M, Mays J, Zhou H, Lucero R, Park J, et al. Therapeutic inhibition of mTORC2 rescues the behavioral and neurophysiological abnormalities associated with Pten-deficiency. Nat Med. 2019;25(11):1684-90. Doi: 10.1038/s41591-019-0608-y
Lintas C, Persico AM. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet. 2009 [citado: 19/09/2020];46(1):1-8. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2603481/pdf/JMG-46-01-0001.pdf
Kim SK. Recent update of autism spectrum disorders. Korean J Pediatr. 2015 [citado: 19/09/2020];58(1):8-14. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4342781/
Robinson EB, Neale BM, Hyman SE. Genetic research in autism spectrum disorders. Curr Opin Pediatr. 2015 [citado: 19/09/2020];27(6):685-91. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4650984/pdf/coped-27-685.pdf
Yasin H, Gibson WT, Langlois S, Stowe RM, Tsang ES, Lee L, et al A distinct neurodevelopmental syndrome with intellectual disability, autism spectrum disorder, characteristic facies, and macrocephaly is caused by defects in CHD8. J Hum Genet. 2019 [citado: 19/09/2020];64(4):271-80. Doi: 10.1038/s10038-019-0561-0.
Bernier R, Golzio C, Xiong B. Disruptive CHD8 mutations define a subtype of autism early in development. Cell. 2014 [citado: 19/09/2020];158:263-76. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4136921/
Barnard RA, Pomaville MB, O'Roak BJ. Mutations and modeling of the chromatin remodeler CHD8 define an emerging autism etiology. Front Neurosci. 2015 [citado: 19/09/2020];9:477. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4681771/
Sugathan A, Biagioli M, Golzio C, Erdin S, Blumenthal I, Manavalan P, et al. CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors. Proc Natl Acad Sci USA. 2014 [citado: 19/09/2020];111(42):E4468-77. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4210312/pdf/pnas.201405266.pdf
Xu Q, Liu YY, Wang X, Tan GE, Li HP, Hulbert SW, et al. Autism-associated CHD8 deficiency impairs axon development and migration of cortical neurons. Mol Autism. 2018 [citado: 19/09/2020];9:65. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6299922/
Pinto D, Delaby E, Merico D, Barbosa M, Merikangas A, Klei L, et al. Convergence of Genes and Cellular Pathways Dysregulated in Autism Spectrum Disorders. Am J Hum Genet. 2014 [citado: 19/09/2020];94(5):677-94. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4067558/
Gamsiz ED, Sciarra LN, Maguire AM, Pescosolido MF, van Dyck LI, Morrow EM. Discovery of Rare Mutations in Autism: Elucidating Neurodevelopmental Mechanisms. Neurotherapeutics. 2015 [citado: 19/09/2020];12(3):553-71. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4489950/
Schaefer GB. Clinical Genetic Aspects of ASD Spectrum Disorders. Int J Mol Sci. 2016 [citado: 19/09/2020];17(2):180. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4783914/pdf/ijms-17-00180.pdf