2022, Number 4
<< Back Next >>
Med Crit 2022; 36 (4)
Mechanical power as a predictor of mortality in patients diagnosed with SARS-CoV-2 pneumonia who received invasive mechanical ventilation
Avendaño GLM, Moran NLÁ, Cortes RJS, Huanca PJM, Alejandro GMM, Cortes GA
Language: Spanish
References: 18
Page: 210-214
PDF size: 190.35 Kb.
ABSTRACT
Introduction: The mechanical forces generated during mechanical ventilation by the interaction between the ventilator and the respiratory system can damage the lung in a process that has been called ventilator induced injury. The degree of injury has been related to the amount of energy transferred from the mechanical ventilator to the respiratory system within a given period of time, called mechanical power, experimental data based on tomographies suggest that mechanical power greater than 12 J/min could generate injury. It is projected as another variables to control within lung protection strategies, determining in experimental studies as an energy threshold from which mechanical changes in the lung begin that can lead to ventilator induced injury.
Material and methods: A retrospective, analytical, comparative study was carried out. All patients with a diagnosis of SARS-CoV-2 pneumonia who required invasive mechanical ventilation were admitted; In a period of time between March-August 2021, they were admitted to the intensive care unit and used mechanical power as a variable to predict mortality.
Results: The studied population consisted of 67 patients; the association between high mechanical power at 48 hours and mortality was evaluated, it was documented that 49.25% (n = 33) of the patients who maintained high mechanical power in 48 hours died, 28.35% (n = 19) with power high mechanical was not associated with mortality, 8.95% (n = 6) who did not have high mechanical power calculation died and 13.43% (n = 9) of patients with mechanical power less than 12 J/min survived. An association test was performed with Pearson's χ
2 in which a p value of 0.105 was obtained, so there is no statistically significant difference and the association between the mortality of the patients is not corroborated. with high mechanical power (> 12 J/min) at 48 hours.
Conclusion: Mechanical power can be considered as another variable to control as a lung protection strategy for patients with SARS-CoV-2 infection, based on the fact that the energy transmitted to the lung has a greater impact on patients who receive mechanical ventilation for an interval time greater than seven days, with an average stay in the intensive care unit 12.3 + 6.2 days and the average days of invasive mechanical ventilation 9.2 + 5.6.
REFERENCES
Joost WW, Rhodes A, Cheng AC, Peacock SJ, Peascott HC, Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19) a review. JAMA. 2020;324(8):782-793.
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents. 2020;55(3):105924.
Fosbol EL, Butt JH, Astergaard L, Andersson Ch, Selmer C, Kragholm K, et al. Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality. JAMA. 2020;324(2):168-177.
Lu R, Zhao X, Li J, Niu P, Yang MS, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(20):565-574.
Senzi A, Bindi M, Cappellini I, Zamidei L, Consales G. COVID-19 and VILI: developing a mobile app for measurement of mechanical power at a glance. Intensive Care Med Exp. 2021;9(1):6.
Coppola S, Caccioppola A, Froio S, Formenti P, De Giorgis V, Galanti V, et al. Effect of mechanical power on intensive care mortality in ARDS patients. Crit Care. 2020;24(1):246.
Marini JJ. Evolving concepts for safer ventilation. Crit Care. 2019;23(Suppl 1):114.
Gattinoni L, Tonetti T, Cressoni M, Cadringher P, Herrmann P, Moerer O, et al. Ventilator-related causes of lung injury: the mechanical power. Intensive Care Med. 2016;42(10):1567-1575.
Kumar A, Pontoppidan H, Falke KJ, Wilson RS, Laver MB. Pulmonary barotrauma during mechanical ventilation. Crit Care Med. 1973;1(4):181-186.
Dreyfuss D, Soler P, Basset G, Saumon G. High inflation pressure pulmonary edema. Respective effects of high airway pressure, high tidal volume, and positive end-expiratory pressure. Am Rev Respir Dis. 1988;137(5):1159-1164.
Protti A, Maraffi T, Milesi M, Votta E, Santini A, Pugni P, et al. Role of strain rate in the pathogenesis of ventilator-induced lung edema. Crit Care Med. 2016;44(9):e838-e845.
Cressoni M, Gotti M, Chiurazzi C, Massari D, Algieri I, Amini M, et al. Mechanical power and development of ventilator-induced lung injury. Anesthesiology. 2016;124(5):1100-1108.
Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M. Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis. 1987;136(3):730-736.
Silva PL, Ball L, Rocco PRM, Pelosi P. Power to mechanical power to minimize ventilator-induced lung injury? Intensive Care Med Exp. 2019;7(Suppl 1):38.
Silva PL, Negrini D, Rocco PR. Mechanisms of ventilator-induced lung injury in healthy lungs. Best Pract Res Clin Anaesthesiol. 2015;29(3):301-313.
Cruz FF, Ball L, Rocco PRM, Pelosi P. Ventilator-induced lung injury during controlled ventilation in patients with acute respiratory distress syndrome: less is probably better. Expert Rev Respir Med. 2018;12(5):403-414.
Moraes L, Silva PL, Thompson A, Santos CL, Santos RS, Fernandes MVS, et al. Impact of different tidal volume levels at low mechanical power on ventilator-induced lung injury in rats. Front Physiol. 2018;9:318.
Serpa Neto A, Deliberato RO, Johnson AEW, Bos LD, Amorim P, Pereira SM, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med. 2018;44(11):1914-1922.