2021, Number 6
<< Back Next >>
Acta Ortop Mex 2021; 35 (6)
Intraclass correlation intra- and inter-observer of the pivot-shift maneuver through mobile application: ''pivot-shift meter''
Ramos-Moctezuma I, Quintana-Trejo F, Sigala-González L, Leal-Berumen I, Cañedo E, Tonche-Ramos J, Carmona-Máynez O, Aguirre-Madrid A, Berumen-Nafarrate E
Language: Spanish
References: 25
Page: 500-506
PDF size: 336.69 Kb.
ABSTRACT
Introduction: The anterior cruciate ligament is an anatomical structure that tends to cause problems for specialists when formulating an accurate diagnosis. There are measurement tools that support the diagnosis such as the KT1000; however, it still has some limitations, since it only manages to measure a single axis of movement, while the "pivot-shift" maneuver manages to capture more information about the state of the ligament, as it allows to evaluate the three axes of movement of the joint. The "pivot-shift" maneuver lacks a standard execution, therefore it can produce disagreement between evaluators; this creates the need for a tool capable of standardizing the maneuver, while providing an interpretable measurement.
Material and methods: Pivot-shift meter application, a mobile software capable of capturing information on the movements made when executing a pivot maneuver. Intraclass correlation coefficient to measure the intra- and inter-observer correlation of the information captured by the application. The data was obtained from 66 random participants, using the mobile phone's built-in gyroscopes.
Results: With the 66 tests carried out, it was observed that the evaluators tend to achieve high reproducibility when executing the maneuvers within the time period established by the application, which reached an intraclass correlation coefficient above 90%.
Conclusion: The intra- and inter-observer correlation is high enough to be able to perform a quantitative analysis of the pivot-shift maneuver, through a mobile phone.
REFERENCES
Berumen-Nafarrate E, Tonche-Ramos J, Carmona-González J, Leal-Berumen I, Vega-Nájera CA, Díaz-Arriaga JM, et al. Interpretación de la maniobra de pivote mediante el uso de acelerómetros en pacientes que acuden a consulta ortopédica. Acta Ortop Mex. 2015; 29(3): 176-81.
Berumen-Nafarrate E, Carmona-González J, Tonche-Ramos JJ, Carmona-Máynez O, Aguirre-Madrid A, Reyes-Conn RA, et al. Clasificación cuantitativa de la maniobra de pivot-shift. Acta Ortop Mex. 2021; 35(2): 153-7. Disponible en: https://dx.doi.org/10.35366/101858
Roessler PP, Schüttler KF, Heyse TJ, Wirtz DC, Efe T. The anterolateral ligament (ALL) and its role in rotational extra-articular stability of the knee joint: a review of anatomy and surgical concepts. Arch Orthop Trauma Surg. 2016; 136(3): 305-13.
Kircher J. Editorial commentary: the measurement of knee laxity: instrumented measurement and stress radiography for anterior cruciate ligament injuries. Arthroscopy - Journal of Arthroscopic and Related Surgery. 2019; 35(6): 1733-5. Available in: https://doi.org/10.1016/j.arthro.2019.03.015
Mae T, Shino K, Hiramatsu K, Tachibana Y, Nakagawa S, Yoshikawa H. Anterior laxity of the knee assessed with gravity stress radiograph. Skeletal Radiol. 2018; 47(10): 1349-55. Available in: https://doi. org/10.1007/s00256-018-2941-5
Tanaka T, Hoshino Y, Miyaji N, Ibaragi K, Nishida K, Nishizawa Y, et al. The diagnostic reliability of the quantitative pivot-shift evaluation using an electromagnetic measurement system for anterior cruciate ligament deficiency was superior to those of the accelerometer and iPad image analysis. Knee Surg Sports Traumatol Arthrosc. 2018; 26(9): 2835-40. Available in: https://doi.org/10.1007/s00167-017- 4734-0
Lee DW, Lee JH, Kim DH, Park JH, Kim JG. Quantitative measures of pivot shift on knee rotatory instability. Arthrosc Orthop Sports Med. 2018; 5: 11-8 Available in: https://doi.org/10.14517/aosm17011
Kilinc BE, Kara A, Celik H, Oc Y, Camur S. Evaluation of the accuracy of Lachman and anterior drawer tests with KT1000 in the follow-up of anterior cruciate ligament surgery. J Exerc Rehabil. 2016; 12: 363-7.
Wiertsema SH, van Hooff HJA, Migchelsen LAA, Steultjens MPM. Reliability of the KT1000 arthometer and the Lanchman in patients with an ACL rupture. Knee. 2008; 15: 107-10.
Kuroda R, Hoshino Y, Araki D, et al. Quantitative measurement of the pivot shift, reliability, and clinical applications. Knee Surg Sports Traumatol Arthrosc. 2012; 20(4): 686-91.
Ahldén M, Araujo P, Hoshino Y, et al. Clinical grading of the pivot shift test correlates best with tibial acceleration. Knee Surg Sports Traumatol Arthrosc. 2012; 20(4): 708-12.
Muñoz E, Mejía S, Correa J. Signo del Hospital San José, una alternativa sencilla para el pivot shift para diagnóstico de inestabilidad anerolateral de la rodilla por lesión del ligamento cruzado anterior. Rev Colomb Ortop Traumatol. 2014; 28(1): 13-5.
Najafi B, Aminian K, Loew F, Blanc Y, Robert P. Measurement of stand-sit and sit-stand transitions using miniature gyroscope and its application in fall risk evaluation in the Eldery. IEEE Trans Biomed Eng. 2002; 49(8): 843-51.
Klasan A, Putnis SE, Kandhari V, Oshima T, Fritsch BA. Healthy knee KT1000 measurments of anterior tibial translation have significant variation. Knee Surgery, Sports Traumatology, Arthroscopy. 2020; 28: 2177-83. Available in: https://doi.org/10.1007/s00167-019-05768-w
Musahl V, Griffith C, Irrgang JJ, Hoshino Y, Kuroda R, Lopomo N, et al. Validation of quantitative measures of rotatory knee laxity. Am J Sports Med. 2016; 44(9): 2393-8. doi: 10.1177/0363546516650667.
Ferretti A, Monaco E, Fabbri M, Maestri B, De Carli A. Prevalence and classification of injuries of anterolateral complex in acute anterior cruciate ligament tears. Arthroscopy. 2017; 33(1): 147-54. Available in: https://doi.org/10.1016/j.arthro.2016.05.010.
Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016; 15(2): 155-63.
Bartko JJ. The intraclass correlation coefficient as a measure of reliability. Psychol Rep. 1966; 19(1): 3-11.
Mehta S, Bastero-Caballero RF, Sun Y, Zhu R, Murphy DK, Hardas B, Koch G. Performance of intraclass correlation coefficient (ICC) as a reliability index under various distributions in scale reliability studies. Stat Med. 2018; 37(18): 2734-52. doi: 10.1002/sim.7679.
Weir JP. Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. J Strength Cond Res. 2005; 19(1): 231-40.
Mandeville PB. El coeficiente de correlación intraclase (ICC). Ciencia UANL. 2005; 8(3): 414-6.
Mandeville PB. El coeficiente de correlación de concordancia de Lin. Ciencia UANL .2007; 10(001): 91-94.
Cortes-Reyes E, Rubio-Romero JA, Gaitán-Duarte H. Métodos estadísticos de evaluación de la concordancia y la reproducibilidad de pruebas diagnósticas. Revista Colombiana de Obstetricia y Ginecología. 2010; 61(3): 247-55.
Müller R, Büttner P. A critical discussion of intraclass correlation coefficients. Stat Med. 1994; 13(23?24): 2465-76.
Ionan AC, Polley MYC, McShane LM, Dobbin KK. Comparison of confidence interval methods for an intra-class correlation coefficient (ICC). BMC Med Res Methodol. 2014; 14: 1.
EVIDENCE LEVEL
Estudio de diagnóstico nivel II