2021, Number 1
<< Back Next >>
Rev Cubana Invest Bioméd 2021; 40 (1)
Heart dynamics diagnosis based on entropy proportions
Rodríguez VJO, Correa C, Ramirez L, Santos RAN, Riaño RS, Bacca PMA
Language: Spanish
References: 32
Page: 1-21
PDF size: 716.05 Kb.
ABSTRACT
Introduction:
The normal and abnormal heart rate values recorded on ambulatory or continuous electrocardiographic devices have been characterized with novel diagnostic methodologies developed in the context of dynamic systems and entropy theory.
Objective:
Through a blind study, evaluate the heart dynamics of adults taking into account their behavior in the context of dynamic systems theory and entropy proportions.
Methods:
A diagnostic test was conducted through a 500 Holter blind study, applying a novel methodology based on the entropy proportions of the numerical attractor constructed with the values registered on the Holter device. To achieve this end, maximum and minimum heart rate values for each hour, as well as the number of beats, were obtained from each Holter device for at least 18 hours. Based on these values, a numerical attractor was generated which quantified the probability of consecutive heart rate pairs. Each dynamic was evaluated in terms of entropy values and their proportions. These results were then compared with the conventional clinical evaluation, estimating the sensitivity and specificity as well as the kappa coefficient.
Results:
Differences were found between the dynamics of normal and abnormal cases, in the heart dynamics evaluated in 18 hours, finding sensitivity and specificity values of 100% and a kappa coefficient of 1, with respect to conventional clinical diagnosis.
Conclusions:
Entropy values and their proportions make it possible to quantitatively differentiate the normality of the disease in heart dynamics for a minimum of 18 hours.
REFERENCES
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading Mass: Addison- Wesley; 1992.
Feynman R, Leighton R, Sands M. Leyes de Newton de la Dinámica. En: Feynman R, Leighton R, Sands M. Física. Wilmington: Addison-Wesley Iberoamericana, S. A. México; 1998. vol. 3 p. 1-14.
Calabrese JL. Ampliando las fronteras del reduccionismo. Deducción y sistemas no lineales. Psicoanálisis APdeBA. 1999;21(3):431-53.
Feynman RP, Leighton RB, Sands M. Probabilidad. En: Física. Feynman R, Leighton R, Sands M. Física. Wilmington: Addison-Wesley Iberoamericana, S. A. México; 1998. vol. 1 p. 1-16.
Shore JE. Relative Entropy, Probabilistic Inference and AI. Machine Intelligence and Pattern Recognition. 1986;4:211-5.
Frodden E, Royo J. Entropía e información. Seminario final del curso de Termodinámica. Universidad de Chile, Facultad de Ciencias, Depto. de Física; 2004.
Tolman R. Principles of statistical mechanics. New York: Dover Publications; 1979.
Mayer C, Bachler M, Hörtenhuber M, Stocker C, Holzinger A, Wassertheurer S. Selection of entropy-measure parameters for knowledge discovery in heart rate variability data. BMC Bioinformatics. 2014;15(Suppl 6):S2.
ChuDuc H, Nguyen K, Dung P, Viet N. A Review of Heart Rate Variability and its Applications. APCBEE Procedia. 2013;7:80-5.
Hagmair S, Braunisch MC, Bachler M, Schmaderer C, Hasenau AL, Bauer A, et al. Implementation and verification of an enhanced algorithm for the automatic computation of RR-interval series derived from 24?h 12-lead ECGs. Physiol Meas. 2017;38(1):1-14.
Pincus SM. Assessing serial irregularity and its implications for health. Annals of the New York Academy of Sciences. 2001;954:245-67.
Hornero R, Aboy M, Abasolo D, McNames J, Goldstein B. Interpretation of approximate entropy: analysis of intracranial pressure approximate entropy during acute intracranial hypertension. IEEE Trans Biomed Eng. 2005;52(10):1671-80.
Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci USA. 1991;88(6):2297-2301.
Rodríguez J, Prieto S, Ramírez L. A novel heart rate attractor for the prediction of cardiovascular disease. Informatics in medicine. 2019;15(100174):1-9.
Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C, et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. En: Rodríguez LG, coord. La emergencia de los enfoques de la complejidad en América Latina: desafíos, contribuciones y compromisos para abordar los problemas complejos del siglo XXI. Buenos Aires: Comunidad Editora Latinoamericana; 2015. vol. I p. 315-44.
Rodríguez J, Sanchez M, Barrios F, Velasquez N, Mora J. Exponential law of cardiac dynamics for physical-mathematical evaluation in 16 h. Med Univ. 2017;19(77):159-65.
Rodríguez J, Prieto S, Dominguez D, Correa C, Melo M, Pardo J, et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev. Fac. Med. 2014;62(4):539-46.
Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Méndez L, et al. Diagnóstico físico-matemático de la dinámica cardiaca a partir de sistemas dinámicos y geometría fractal: disminución del tiempo de evaluación de la dinámica cardiaca de 21 a 16 horas. Acta Colomb Cuid Intensivo. 2016;16(1):15-22.
Rodríguez J. Dynamical systems applied to dynamic variables of patients from the intensive care unit (ICU): Physical and mathematical mortality predictions on ICU. J. Med. Med. Sci. 2015;6(8):209-20.
Vandeput S, Verheyden B, Aubert AE, Van Huffel S. Nonlinear heart rate dynamics: Circadian profile and influence of age and gender. Medical Engineering & Physics. 2012;34(1):108-17.
Goldberger A, Amaral L, Hausdorff JM, Ivanov P, Peng Ch, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. PNAS. 2002;99:2466-72.
Huikuri HV, Mäkikallio TH, Peng Ch, Goldberger AL, Hintze U, Moller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infartion. Circulation. 2000;101:47-53.
Perkiomaki J, Mäkikallio T, Huikuri H. Fractal and complexity measures of heart rate variability. Clinical and Experimental Hypertension. 2005;27(2-3):149-58.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philosophical Transactions of Royal Society A. 2009;367(1887): 277-96.
Rodríguez J, Prieto S, Correa C, Mendoza F, Weisz G, Soracipa M, et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf - Mandelbrot law. Journal of Modern of Physics. 2015;6(13):1881-8.
Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G, et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J. Med. Med. Sci. 2014;5(5):102-8.
Rodríguez J, Prieto S, Correa C, Bernal P, Puerta G, Vitery S, et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Medical Physics. 2010;10:1-6.
Prieto S, Rodríguez J, Correa C, Soracipa Y. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Medical Physics 2014, 14(2):1-9.
Velásquez J, Prieto S, Catalina C, Dominguez D, Cardona DM, Melo M. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. Journal of Cancer Research and Therapeutics. 2015;11(1): 98-104.
Rodríguez J, Prieto S, Pérez C, Correa C, Soracipa Y, Jattin J, et al. Predicción temporal de CD4+ en 80 pacientes con manejo antirretroviral a partir de valores de leucocitos. Infectio. 2020;24(2):103-7.
Rodríguez J. Spatio-temporal probabilistic prediction of appearance and duration of malaria outbreak in municipalities of Colombia. J. Phys. Conf. Ser. 2019;1160:1-7.
Rodríguez J, Bernal P, Prieto P, Correa C, Álvarez L, Pinilla L, et al. Predicción de unión de péptidos de Plasmodium falciparum al HLA clase II. Probabilidad, combinatoria y entropía aplicadas a las proteínas MSP-5 y MSP-6. Archivos de Alergia e Inmunología Clínica. 2013;44(1):7-14.