2021, Number 1
<< Back Next >>
Rev Cubana Farm 2021; 54 (1)
Importance of samples preparation in the study of clobenzorex’s metabolism
McPherson MA, Martínez BD, Torres CM, Fiallo FT, Correa VT, Montes de Oca PR
Language: Spanish
References: 30
Page: 1-21
PDF size: 1558.92 Kb.
ABSTRACT
Introduction: The selection of the trial to study the metabolism of a substance
depends on its metabolic reactions, which can positively influence the selectivity
of the method and the collection of analytes, among others.
Objective: Define the influence of sample preparation in the study of clobenzorex
metabolism in the conditions of the Anti-Doping Laboratory in Havana.
Methods: Urine samples were collected before and after the administration of a
dose of clobenzorex to a supposedly healthy volunteer. Three trials (A, B and C) designed for the detection of Phase I and Phase II metabolites were applied. The
extraction method was liquid-liquid and the difference between the methods was
the derivatives formation and enzymatic hydrolysis. The instrumental technique
used was gas chromatography coupled to mass spectrometry, and the data
collection mode was SCAN from 50 to 600 Da.
Results: The detection of the most volatile clobenzorex’s metabolites was
affected by the manipulation of the sample, while the hydroxylated ones (phase
I) required hydrolysis to be detected. With the application of method A, 3
compounds were identified, 5 with the application of method B and with the
application of method C, 8 metabolites were identified. At 24 hours after
administration of the drug, 6 of these compounds could be detected by method C.
Conclusions: The application of appropriate sample preparation methods, not
only to detect doping in athletes, but also in the study of the metabolism of drugs
eliminated in urine, defines the quantity and quality of the information obtained.
Under the conditions of the Anti-Doping Laboratory of Havana, better detection
of clobenzorex and its metabolites requires a step of enzymatic hydrolysis and one
of derivative formation, in order to obtain analytes with good chromatographic
conditions when analyzed by the CG-EM technique.
REFERENCES
World Anti-Doping Agency (WADA). Prohibited List 2021. World Anti-DopingCode; January 2021. p. 1-24. [acceso 24/03/2021]. Disponible en:https://www.wada-ama.org/en/media/news/2021-01/wada-2021-list-ofprohibited-substances-and-methods-now-in-force
Cao Z, Kaleta E, Wang P. Simultaneous quantitation of 78 drugs andmetabolites in urine with a dilute-and-shoot LC-MS-MS assay. Journal ofAnalytical Toxicology. 2015;39(5):335-346. DOI: 10.1093/jat/bkv024
Dong Y, Yan K, Ma Y, Wang Sh, He G, Deng J, et al. A sensitive dilute-andshootapproach for the simultaneous screening of 71 stimulants and 7metabolites in human urine by LC-MS-MS with dynamic MRM. Journal ofChromatographic Science. 2015;53(9):1528-35. DOI: 10.1093/chromsci/bmv048
Kim Y, Jeon M, Min H, Son J, Lee J, Kwon O, et al. Development of a multifunctionalconcurrent assay using weak cation-exchange solid-phase extraction(WCX-SPE) and reconstitution with a diluted sample aliquot for anti-dopinganalysis. Rapid Communication in Mass Spectrometry. 2018;32(11):897-905. DOI:10.1002/rcm.8119
Dario C, Cynthia L, Maria F-A, Gloria M, Daniel C. Determination of DopingPeptides via Solid-Phase Microelution and Accurate-Mass Quadrupole Time-Of-Flight LC-MS. Journal of Chromatography B: Analytical Technologies in theBiomedical and Life Sciences. 2017;(1065-1066):134-144. DOI:10.1016/j.jchromb.2017.08.044
Athanasiadou I, Kiousi P, Kioukia-Fougia N, Lyris E, Angelis YS. Current statusand recent advantages in derivatization procedures in human doping control.Bioanalysis. 2015;7(19):2537-56. DOI: 10.4155/bio.15.172
World Anti-Doping Agency. International Standard World Anti-Doping Code.Canadá: WADA; 2021. p 1-184. [acceso 24/03/2021]. Disponible en:https://www.wadaama.org/sites/default/files/resources/files/2021_wada_code.pdf
Rosano TG, Ohouo PY, Wood M. Screening with quantification for 64 drugs andmetabolites in human urine using UPLC-MS-MS analysis and a threshold accuratecalibration. Journal of Analytical Toxicology. 2017;41(6):536-46. DOI:10.1093/jat/bkx035
Segawa H, Iwata YT, Yamamuro T, Kuwayama K, Tsujikawa K, Kanamori T, etal. Differentiation of ring-substituted regioisomers of amphetamine andmethamphetamine by supercritical fluid chromatography. Drug Testing andAnalysis. 2017;9(3):389-98. DOI: 10.1002/dta.2040
Woźniak WK, Wiergowski M, Aszyka J, Kubica P, Namieśnik J, Biziuk M.Application of gas chromatography–tandem mass spectrometry for thedetermination of amphetamine-type stimulants in blood and urine. Journal ofPharmaceutical and Biomedical Analysis. 2018;148:58-64. DOI:10.1016/j.jpba.2017.09.020
Woźniak MK, Banaszkiewicz L, Wiergowski M, Tomczak E, Kata M, Szpiech B,et al. Development and validation of a GC–MS/MS method for the determinationof 11 amphetamines and 34 synthetic cathinones in whole blood. ForensicToxicology. 2020;38(1):42-58. DOI: 10.1007/s11419-019-00485-y
Thevis M, Sigmund G, Geyer H, Schänzer W. Stimulants and Doping in Sport.Endocrinology & Metabolism Clinics of North America; 2010;39(1):89-105. DOI:10.1016/j.ecl.2009.10.011
Jesús F, Armijo JA, Mediavilla A. Farmacología Humana. 5.a ed. (Elsevier M,ed.). Madrid: MASSON; 2008. https://booksmedicos.org/farmacologia-humana-5a-edicion-jesus-flores/#more-50295
Valtier S, Cody JT. Differentiation of clobenzorex use from amphetamineabuse using the metabolite 4-hydroxyclobenzorex. Journal of AnalyticalToxicology. 2000;24(7):606-13. DOI: 10.1093/jat/24.7.606
Cody JT, Valtier S. Amphetamine, clobenzorex, and 4-hydroxyclobenzorexlevels following multidose administration of clobenzorex. Journal of AnalyticalToxicology. 2001;25(3):158-65. DOI: 10.1093/jat/25.3.158
Lai Z, Oliver F. Mass spectral fragmentation of trimethylsilylated smallmolecules. Mass Spectrometry Review.2016; 9999:1-13. DOI: 10.1002/mas.21518
Ventura R, Matabosch X, Segura J. Bioanalytical techniques in discriminationbetween therapeutic and abusive use of drugs in sport. Bioanalysis.2016;8(9):965-. DOI: 10.4155/bio.15.253
Gomez C, Fabregat A, Pozo ÓJ, Marcos J, Segura J, Ventura R. Analyticalstrategies based on mass spectrometric techniques for the study of steroidmetabolism. TrAC Trends in Analytical Chemistry. 2014; 53:106-16. DOI:10.1016/j.trac.2013.08.010
Hemmersbach P, De La Torre R. Stimulants, narcotics and β-blockers: 25years of development in analytical techniques for doping control. Journal ofChromatography B Biomedical Applications. 1996;687(1):221-238. DOI:10.1016/S0378-4347(96)00276-9
Nicoli R, Guillarme D, Leuenberger N, Baume N, Robinson N, Saugy M, et al.Analytical Strategies for Doping Control Purposes: Needs, Challenges, andPerspectives. Anal. Chem. 2016;88(1):508-523. DOI:10.1021/acs.analchem.5b03994
Thevis M, Schänzer W. Examples of doping control analysis by liquidchromatography-tandem mass spectrometry: Ephedrines, β-receptor blockingagents, diuretics, sympathomimetics, and cross-linked hemoglobins. Journal ofChromatography Science. 2005;43(1):22-31. DOI: 10.1093/chromsci/43.1.22
Thevis M. Mass Spectrometry in Sports Drug Testing. First Edit. (DesiderioDM, Nibbering NMM, eds.). New Jersey: John Wiley & Sons, Inc.; 2010. DOI:10.1002/9780470626634
Lozano-Cuenca J, González-Hernández A, López-Canales OA, Villagrana-Zesatiet JR, Rodríguez-Choreão JD, Morín-Zaragoza R, et al. Possiblemechanisms involved in the vasorelaxant effect produced by clobenzorex inaortic segments of rats. The Brazilian Journal of Medical and BiologicalResearch. 2017;50(9):1-9. DOI: 10.1590/1414-431x20175765
Kraemer T, Maurer HH. Toxicokinetics of amphetamines: Metabolism andtoxicokinetic data of designer drugs, amphetamine, methamphetamine, andtheir N-alkyl derivatives. Therapeutic Drug Monitoring. 2002;24(2):277-89. DOI:10.1097/00007691-200204000-00009
Cody JT, Valtier S. A Gas Chromatography-Mass Spectrometry Method for theQuantitation of CIobenzorex. Journal of Analytical Toxicology. 1999;23(7):603-08. DOI: 10.1093/jat/23.7.603
World Medical Association Declaration of Helsinki: ethical principles formedical research involving human subjects. General Principles. Journal of theAmerican College of Dentists. 2014;81(3):14-18. DOI:10.1093/acprof:oso/9780199241323.003.0025
World Anti-Doping Agency. Decision limits for the confirmatory quantificationof threshold substances. WADA Technical Document – TD2019DL. 2019; version2.; May 2019. p. 1-14. [acceso 24/03/2021]. Disponible en: https://www.wadaama.org/sites/default/files/resources/files/td2019dl_v2_finalb.pdf
Tsoutsoulova-Draganova A, Halatcheva N, Karova D. Metabolism ofBenzphetamine and Clobenzorex in Human Urine. In: W. Schänzer, Geyer H,Gotzmann A, Mareck-Engelke U, eds. Manfred Donike Workshop - Proceedings ofthe 15th Cologne Workshop on Dope Analysis 1997. Cologne: Sport und BuchStrauß - Köln; 1997. p. 231-248. [acceso 24/03/2021]. Disponible en:https://www.worldcat.org/title/proceedings-of-the-manfred-donike-workshop-15th-cologne-workshop-on-dope-analysis-23rd-to-28th-february-1997/oclc/174316464
Maurer HH, Kraemer T, Ledvinka O, Schmitt CJ, Weber AA. Gaschromatography-mass spectrometry (GC-MS) and liquid chromatography-massspectrometry (LC-MS) in toxicological analysis. Studies on the detection ofclobenzorex and its metabolites within a systematic toxicological analysisprocedure by GC-MS and by immunoassay and studies on the detection of α- andβ-amanitin in urine by atmospheric pressure ionization electrospray LC-MS.Journal of Chromatography B: Biomedical Sciences and Applications;1997;689(1):81-9. DOI: 10.1016/s0378-4347(96)00348-9
Mueller JW, Gilligan LC, Idkowiak J, Arlt W, Foster PA. The regulation ofsteroid action by sulfation and desulfation. Endocrinology Review;2015;36(5):526-63. DOI: 10.1210/er.2015-1036