2022, Number 1
Next >>
Otorrinolaringología 2022; 67 (1)
Effect of sodium 2-mercaptoethanesulfonate (MESNA) on microbiota of pediatric patients with chronic cholesteatomatous otitis media using 16S bacterial ribosomal RNA sequencing
de la Torre-González C, Hernández-Alcántara LE, Gómez-Ramírez U, Velázquez-Guadarrama N
Language: Spanish
References: 29
Page: 1-15
PDF size: 341.26 Kb.
ABSTRACT
Objective: To evaluate the changes in the microbiota in the chronic cholesteatomatous
otitis media after the application of sodium 2-mercaptoethanesulfonate (MESNA) in the
pediatric population, through 16S bacterial ribosomal RNA sequencing.
Materials and Methods: A subexperimental, prolective study done at the Otorhinolaryngology
service of Hospital Infantil de México Federico Gómez, Mexico City,
from December 2017 to December 2018, including children with chronic cholesteatomatous
otitis media who underwent primary or revision mastoidectomy. The RNA of
cholesteatomas was obtained (before and after MESNA application). Relative abundance,
richness and diversity were determined at the level of
phylum and genera.
Results: Twenty-six samples were included, corresponding to 13 children of both sexes,
without comorbidities. It was possible to identify more than 98% of the sequences at
the level of
phylum, class, order, and family. The microbiota was represented by the
predominant phyla
Firmicutes, Proteobacteria, Actinobacteria, Cyanobacteria and
Bacteroidetes.
At the genus level,
Turicella and
Alloiococcus were observed in association
with the disease. Likewise, it was observed that after the application of MESNA, the
genera
Propionibacteria and
Staphylococcus associated with the usual microbiota of the
middle ear prevailed and increased in abundance. Similarly, an increase in the diversity
of bacteria was observed, as well as an increase and emergence of other genera that
are part of the endogenous microbiota of the middle ear.
Conclusions: The emergence and prevalence of genera present in the normal healthy
middle ear microbiota and the loss of pathogenic genus demonstrate the usefulness
of MESNA.
REFERENCES
Post JC. Direct evidence of bacterial biofilms in otitis media. 2001. Laryngoscope 2015; 125 (9): 2003-14. doi: 10.1002/lary.25291.
Galli J, Calò L, Giuliani M, Sergi B, Lucidi D, Meucci D, et al. Biofilm’s role in chronic cholesteatomatous otitis media: A pilot study. Otolaryngol Head Neck Surg 2016; 154 (5): 914-6. doi: 10.1177/0194599816630548.
Minami SB, Mutai H, Suzuki T, Horii A, Oishi N, Wasano K, et al. Microbiomes of the normal middle ear and ears with chronic otitis media. Laryngoscope 2017; 127 (10): E371-E377. doi: 10.1002/lary.26579.
Frickmann H, Zautner AE. Cholesteatoma? A potential consequence of chronic middle ear inflammation. Otolaryngol 2012; S5: 001. Doi: 10.4172/2161-119X.S5-001
Kaya E, Dag I, Incesulu A, Gurbuz M, Acar M, Birdane L. Investigation of the presence of biofilms in chronic suppurative otitis media, nonsuppurative otitis media, and chronic otitis media with cholesteatoma by scanning electron Microscopy Scien World J 2013: 1-6. doi. org/10.1155/2013/638715.
Chole RA, Faddis BT. Evidence for microbial biofilms in cholesteatomas. Arch Otolaryngol Head Neck Surg 2002; 128 (10): 1129-33. doi: 10.1001/archotol.128.10.1129.
Brook I. The role of anaerobic bacteria in chronic suppurative otitis media in children: Implications for medical therapy. Anaerobe 2008; 14 (6): 297-300.
Nogues JC, Pérez-Losada M, Preciado D. Review of otitis media microbiome studies: What do they tell us? Laryngoscope Investig Otolaryngol 2020; 5 (5): 936-940.
Bassiouny M, Badour N, Omran A, Osama H. Histopathological and immunohistochemical characteristics of acquired cholesteatoma in children and adults. Egypt J Ear Nose Throat Allied Scien 2012; 13 (1): 7-12.
Maniu A, Harabagiu O, Perde-Schrepler M, Cătană A, Fănuţă B, Mogoantă CA. Molecular biology of cholesteatoma. Rom J Morphol Embryol 2014; 55: 7-13.
Petti CA, Polage CR, Schreckenberger P. The role of 16S rRNA gene sequencing in identification of microorganisms misidentified by conventional methods. J Clin Microbiol 2005; 43 (12): 6123-5. doi: 10.1128/JCM.43.12.6123- 6125.2005.
Kalcioglu MT, Guldemir D, Unaldi O, Egilmez OK, Celebi B, Durmaz R. Metagenomics analysis of bacterial population of tympanosclerotic plaques and cholesteatomas. Otolaryngol Head Neck Surg 2018; 159 (4): 724-732. doi: 10.1177/0194599818772039.
Yilmaz M, Goksu N, Bayramoglu I, Bayazit YA. Practical use of MESNA in atelectatic ears and adhesive otitis media. ORL J Otorhinolaryngol Relat Spec 2006; 68 (4): 195-8. doi: 10.1159/000091472.
Kalcioglu MT, Cicek MT, Bayindir T, Ozdamar OI. Effectiveness of MESNA on the success of cholesteatoma surgery. Am J Otolaryngol 2014; 35 (3): 357-61. doi: 10.1016/j. amjoto.2014.01.002.
Vincenti V, Magnan J, Saccardi MS, Zini C. Chemically assisted dissection by means of mesna in cholesteatoma surgery. Otol Neurotol 2014; 35 (10): 1819-24. doi: 10.1097/ MAO.0000000000000514.
Mantilla E. Uso de MESNA en el tratamiento de colesteatoma adquirido de oído medio en niños. Evaluación mediante microscopía de luz y electrónica. Tesis sub-especialidad Universidad Nacional Autonóma de México; 2016.
De la Torre González C, Huante-Guido M, Velázquez Guadarrama N, Preciado D, Patiño López G. Changes in biofilm in chronic cholesteatomatous otitis media in children following the application of sodium 2-mercaptoethanesulfonate (MESNA). Int J Pediatr Otorhinolaryngol 2018; 110: 48-52.
Casale M, Di Martino A, Salvinelli F, Trombetta M, Denaro V. MESNA for chemically assisted tissue dissection. Expert Opin Investig Drugs 2010; 19 (6): 699-707. doi: 10.1517/13543784.2010.485192.
Ju F, Zhang T. 16S rRNA gene high-throughput sequencing data mining of microbial diversity and interactions. Appl Microbiol Biotechnol 2015; 99 (10): 4119-29. doi: 10.1007/ s00253-015-6536-y.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of highthroughput community sequencing data. Nat Methods 2010; 7 (5): 335-6. doi: 10.1038/nmeth.f.303.
Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, et al.; Human Microbiome Consortium, Petrosino JF, Knight R, Birren BW. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 2011; 21 (3): 494-504. doi: 10.1101/gr.112730.110.
Ricciardiello F, Cavaliere M, Mesolella M, Iengo M. Notes on the microbiology of cholesteatoma: clinical findings and treatment. Acta Otorhinolaryngol Ital 2009; 29 (4): 197-202.
Neeff M, Biswas K, Hoggard M, Taylor M, Douglas R. Molecular Microbiological Profile of Chronic Suppurative Otitis Media. J Clin Microbiol 2016; 54 (10): 2538-2546.
Madana J, Yolmo D, Kalaiarasi R, Gopalakrishnan S, Sujatha S. Microbiological profile with antibiotic sensitivity pattern of cholesteatomatous chronic suppurative otitis media among children. Int J Pediatr Otorhinolaryngol 2011; 75 (9): 1104-1108.
Boers SA, de Zeeuw M, Jansen R, van der Schroeff MP, van Rossum AMC, Hays JP, et al. Characterization of the nasopharyngeal and middle ear microbiota in gastroesophageal reflux-prone versus gastroesophageal reflux non-prone children. Eur J Clin Microbiol Infect Dis 2018; 37 (5): 851-857. doi: 10.1007/s10096-017-3178-2.
Su Z, Ning B, Fang H, Hong H, Perkins R, Tong W, Shi L. Nextgeneration sequencing and its applications in molecular diagnostics. Expert Rev Mol Diagn 2011; 11 (3): 333-43. doi: 10.1586/erm.11.3.
Santos-Cortez RL, Hutchinson DS, Ajami NJ, Reyes-Quintos MR, Tantoco ML, Labra PJ, et al. Middle ear microbiome differences in indigenous Filipinos with chronic otitis media due to a duplication in the A2ML1 gene. Infect Dis Poverty 2016; 5 (1):97. doi: 10.1186/s40249-016-0189-7.
Pettigrew MM, Laufer AS, Gent JF, Kong Y, Fennie KP, Metlay JP. Upper respiratory tract microbial communities, acute otitis media pathogens, and antibiotic use in healthy and sick children. Appl Environ Microbiol 2012; 78 (17): 6262-70.
De la Torre C, Villamor P. Chemically assisted dissection with sodium 2-mercaptoethanesulfonate (MESNA) in the surgical management of pediatric cholesteatoma. Otol Neurotol 2019; 40 (5): 645-650.