2022, Number 1
<< Back Next >>
Med Crit 2022; 36 (1)
The anaerobiosis index predicts mortality in patients with severe pneumonia due to SARS-CoV-2
Carballo ML, Sánchez DJS, Peniche MKG, González EEA, Martínez AFR, Calyeca SMV
Language: Spanish
References: 28
Page: 9-13
PDF size: 266.94 Kb.
ABSTRACT
Introduction: Detecting and correcting anaerobic metabolism is essential in the critically ill patient, unfortunately, there is no gold standard. Patients with severe pneumonia due to SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) present severe hypoxemia, increasing anaerobic metabolism. Lactate and the venoarterial carbon dioxide pressure difference/arteriovenous oxygen content difference (Δp(v-a)CO
2/ΔC(a-v)O
2) are useful in this context.
Material and methods: Prospective, descriptive and analytical cohort study that included patients admitted to the Intensive Care Unit (ICU) in the period from April 18, 2020 to January 18, 2021 with severe pneumonia (defined by the start of invasive mechanical ventilation) by SARS-CoV-2 confirmed.
Results: In the period covered, 91 patients who met the inclusion criteria were included. Of the total, 39 patients were included in the survivors group and 52 in the non-survivors group. It can be seen that the Δp(v-a)CO
2/ΔC(a-v)O
2 also called anaerobiosis index has OR 4.4, 95% CI 1.51-13.04, p = 0.006 in the multivariate analysis.
Conclusion: The increase in the Δp(v-a)CO
2/ΔC(a-v)O
2 also called anaerobiosis index > 1.4 mmHg/mL is associated with a 4.44 times higher risk of death in patients with severe pneumonia (intubated) due to SARS-CoV-2.
REFERENCES
Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3:S8.
Jones AE, Brown MD, Trzeciak S, Shapiro NI, Garrett JS, Heffner AC, et al. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: a meta-analysis. Crit Care Med. 2008;36(10):2734-2739.
Dellinger RP. Cardiovascular management of septic shock. Crit Care Med. 2003;31(3):946-955.
Edul VS, Ince C, Vazquez AR, Rubatto PN, Espinoza ED, Welsh S, et al. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc. 2016;13(2):240-247.
Teboul JL, Mercat A, Lenique F, Berton C, Richard C. Value of the venous-arterial PCO2 gradient to reflect the oxygen supply to demand in humans: effects of dobutamine. Crit Care Med. 1998;26(6):1007-1010.
Vincent JL, Quintairos E Silva A, Couto L Jr, Taccone FS. The value of blood lactate kinetics in critically ill patients: a systematic review. Crit Care. 2016;20(1):257.
Zhang Z, Xu X. Lactate clearance is a useful biomarker for the prediction of all-cause mortality in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2014;42(9):2118-2125.
Kushimoto S, Akaishi S, Sato T, Nomura R, Fujita M, Kudo D, et al. Lactate, a useful marker for disease mortality and severity but an unreliable marker of tissue hypoxia/hypoperfusion in critically ill patients. Acute Med Surg. 2016;3(4):293-297.
Sánchez-Díaz JS, Peniche-Moguel KG, Rivera-Solís G, Martínez-Rodríguez EA, Del-Carpio-Orantes L, Pérez-Nieto OR, et al. Hemodynamic monitoring with two blood gases: "a tool that does not go out of style". Colomb J Anesthesiol. 2020;49(1):e500.
Wasserman K, Beaver WL, Whipp BJ. Gas exchange theory and the lactic acidosis (anaerobic) threshold. Circulation. 1990;81(1 Suppl):II14-II30.
Cohen IL, Sheikh FM, Perkins RJ, Feustel PJ, Foster ED. Effect of hemorrhagic shock and reperfusion on the respiratory quotient in swine. Crit Care Med. 1995;23(3):545-552.
Dubin A, Pozo MO, Hurtado J. Central venous minus arterial carbon dioxide pressure to arterial minus central venous oxygen content ratio as an indicator of tissue oxygenation: a narrative review. Rev Bras Ter Intensiva. 2020;32(1):115-122.
Singh AK, Gupta R, Ghosh A, Misra A. Diabetes in COVID-19: Prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303-310.
Arora S, Tantia P. Physiology of oxygen transport and its determinants in intensive care unit. Indian J Crit Care Med. 2019;23(Suppl 3):S172-S177.
Ruggieri AJ, Levy RJ, Deuschtman CS. Mitochondrial dysfunction and resuscitation in sepsis. Crit Care Clin. 2010;26:567-575.
Saugel BB, Vincent JL, Wagner JJ. Personalized hemodynamic management. Curr Opin Crit Care. 2017;23:334-341.
Ospina-Tascón GA, Umaña M, Bermúdez WF, Bautista-Rincón DF, Valencia JD, Madriñán HJ, et al. Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock. Intensive Care Med. 2016;42(2):211-221.
Dubin A, Pozo MO, Kanoore Edul VS, Risso Vazquez A, Enrico C. Poor agreement in the calculation of venoarterial PCO2 to arteriovenous O2 content difference ratio using central and mixed venous blood samples in septic patients. J Crit Care. 2018;48:445-450.
Dubin A, Ferrara G, Kanoore Edul VS, Martins E, Canales HS, Canullán C, et al. Venoarterial PCO2-to-arteriovenous oxygen content difference ratio is a poor surrogate for anaerobic metabolism in hemodilution: an experimental study. Ann Intensive Care. 2017;7(1):65.
Mallat J, Lemyze M, Meddour M, Pepy F, Gasan G, Barrailler S, et al. Ratios of central venous-to-arterial carbon dioxide content or tension to arteriovenous oxygen content are better markers of global anaerobic metabolism than lactate in septic shock patients. Ann Intensive Care. 2016;6(1):10.
Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol. 2016;290:H2277-H2285.
Mekontso A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28:272-277.
He HW, Liu DW, Ince C. Understanding elevated Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in venous hyperoxia condition. J Clin Monit Comput. 2017;31:1321-1323.
He HW, Liu DW. Central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio: An experimental model or a bedside clinical tool? J Crit Care. 2016;35:219-220.
Yuan S, He H, Long L. Interpretation of venous-to-arterial carbon dioxide difference in the resuscitation of septic shock patients. J Thorac Dis. 2019;11(Suppl 11):S1538-S1543.
Gavelli F, Teboul JL, Monnet X. How can CO2-derived indices guide resuscitation in critically ill patients? J Thorac Dis. 2019;11(Suppl 11):S1528-S1537.
Rivera SG, Sánchez DJS, Martínez REA, García MRC, Huanca PJM, Calyeca SMV. Clasificación clínica de la perfusión tisular en pacientes con choque séptico basada en la saturación venosa central de oxígeno (SvcO2) y la diferencia venoarterial de dióxido de carbono entre el contenido arteriovenoso de oxígeno (ΔP(v-a)CO2/C(a-v)O2). Med Crit. 2016;30(5):283-289.
Pascual ES, Sánchez DJS, Peniche MKG, Martínez REA, Villegas DJE, Calyeca SMV. Evaluación de la perfusión tisular en pacientes con choque séptico normodinámico versus hiperdinámico. Med Crit. 2018;32(6):344-350.