2020, Number 3
<< Back
Biotecnol Apl 2020; 37 (3)
Novel enzymatic catalysts for fructooligosaccharides production from cane sugar
Hernández GL, Menéndez RC, Pérez CER, Martínez GD, Musacchio LA, Ramírez IR, Sobrino LA, Trujillo TLE, Alfonso GD
Language: English
References: 17
Page: 3511-3515
PDF size: 357.80 Kb.
ABSTRACT
Fructooligosaccharides (FOS) are soluble fibers with prebiotic effects in humans and animals. Inulin-type FOS [fructosyl-fructose β (2→1) linkages] are currently in the market, while levan-type FOS [fructosyl-fructose β 2→6) linkages] are not commercially available. The work was attempted to produce modified enzymes capable to yield short-chain FOS with different types of linkages. The genes encoding the enzymes 1) β-fructosidase (BfrA, EC 3.2.1.26) from the bacterium Thermotoga maritima and 2) sucrose:sucrose 1-fructosyltransferase (1-SST, EC 2.4.1.99) from the plant Schedonorus arundinaceus were modified by directed mutagenesis and expressed constitutively in the yeast Pichia pastoris. Three BfrA mutants (W14Y, W14Y–N16S and W14Y–W256Y) enhanced 4 fold the ratio of fructosylation/hydrolysis activities. The reaction with sucrose (1.75 M) yielded 37 % (w/w) FOS with a predominant composition of 6-kestose and neokestose. On the other hand, 1-SST synthesized 1-kestose and nystose in ratio 9:1, with their sum representing 55-60 % (w/w) of total carbohydrates. The culture supernatants from the recombinant P. pastoris clones expressing either BfrA or 1-SST were submitted to ultrafiltration (concentration, dialysis) and lyophilization. The resulting water-soluble powders displayed high specific activity (> 8 000 U/g), high protein purity (> 50 %) and remained stable after 1-year storage at 4 ºC. The enzymatic catalysts BfrA and 1-SST provide attractive alternatives for cane sugar conversion into short-chain FOS of the levan- and inulin-type, respectively. This work received the Annual Award of the Cuban Academy of Sciences for the year 2019.
REFERENCES
Franco-Robles E, López MG. Implication of fructans in health: immunomodulatory and antioxidant mechanisms. Sci World J. 2015;289267.
Mendlik K, Albrecht JA, Schnepf M. Effects of fructooligofructoses chain length on the bifidobacteria of the human colon: a pilot study. Food Nutr Sci. 2012;(3):1615-18.
Mueller M, Reiner J, Fleischhacker L, Viernstein H, Loeppert R, Praznik W. Growth of selected probiotic strains with fructans from different sources relating to degree of polymerization and structure. J Funct Foods. 2016;24:264-75.
Flores-Maltos DA, Mussatto SI, Contreras- Esquivel JC, Rodríguez-Herrera R, Teixeira JA, Aguilar CN. Biotechnological production and application of fructooligosaccharides. Crit Rev Biotechnol 2016;36:259-67.
Liebl W, Brem D, Gotschlich A. Analysis of the gene for β-fructosidase (invertase, inulinase) of the hyperthermophilic bacterium Thermotoga maritima and characterization of the enzyme expressed in Escherichia coli. Appl Microbiol Biotechnol. 1998;50:55-64.
Menéndez C, Martínez D, Trujillo LE, Mazola Y, González E, Pérez ER, Hernández L. Constitutive high-level expression of a codon- optimized β-fructosidase gene from the hyperthermophile Thermotoga maritima in Pichia pastoris. Appl Microbiol Biotechnol. 2013;97:1201-12.
Alberto F, Bignon C, Sulzenbacher G, Henrissat B, Czjzek M. The threedimensional structure of invertase (β-fructosidase) from Thermotoga maritima reveals a bimodular arrangement and an evolutionary relationship between retaining and inverting glycosidases. J Biol Chem. 2004;279):18903-10.
Alberto F, Jordi E, Henrissat B, Czjzek M. Crystal structure of inactivated Thermotoga maritima invertase in complex with the trisaccharide substrate raffinose. Biochem J. 2006;395:457-62.
Vijn I, Smeekens S. Fructan: more than a reserve carbohydrate? Plant Physiol. 1999;120:351- 60.
Lüscher M, Hochstrasser U, Vogel G, Aeschbacher R, Galati V, Nelson CJ, Boller T, Wiemken A. Cloning and functional analysis of sucrose: sucrose 1-fructosyltransferase from tall fescue. Plant Physiol. 2000;124:1217-27.
Spohner S, Müller H, Quitmann H, Czermaka P. Expression of enzymes for the usage in food and feed industry with Pichia pastoris. J Biotechnol. 2015;202:118-34.
Cregg JM, Madden KR. Development of yeast transformation systems and construction of methanol-utilization-defective mutants of Pichis pastoris by gene disruption. In: Stewart GG (ed.) Biological research on industrial yeast. Vol. II. Boca Raton, USA: CRC Press; 1987. p. 1-18
Menéndez C, Martínez D, Pérez ER, Musacchio A, Ramírez R, Lopez Munguia A, Hernández L. Engineered thermostable β–fructosidase from Thermotoga maritima with enhanced fructooligosaccharides synthesis. Enzyme Microb Technol. 2019;125:53-62.
de Abreu M, Alvaro-Benito M, Sanz- Aparicio J, Plou FJ. Fernandez- Lobato M, Alcalde M. Synthesis of 6-kestose using an efficient β-fructofuranosidase engineered by directed evolution. Adv Synth Catal. 2013;355:1698-702.
Hernández L, Menéndez C, Pérez ER, Martínez D, Alfonso D, Trujillo LE, Ramírez R, Sobrino A, Mazola, Musacchio A, Pimentel E. Fructooligosaccharides production by Schedonorus arundinaceus sucrose:sucrose 1-fructosyltransferase constitutively expressed to high levels in Pichia pastoris. J Biotechnol. 2018;266:59-71.
Bali V, Panesar PS, Bera MB, Panesar R. Fructo-oligosaccharides: production, purification and potential applications. Crit Rev Food Sci Nutr 2015;55:1475-90.
Nobre C, Teixeira JA, Rodrigues LR. New trends and technological challenges in the industrial production and purification of fructooligosaccharides. Crit Rev Food Sci Nutr. 2015;55:1444-55.