2021, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Current status of alternative methods, of control of fungi and its effect on the post-harvest quality of tomato fruits (Solanum lycopersicum)
Rodríguez-Guzmán CA, Montaño-Leyva B, Velázquez-Estrada RM, Sánchez-Burgos JA, García-Magaña ML, González-Estrada RR, Gutiérrez-Martínez P
Language: Spanish
References: 116
Page:
PDF size: 246.51 Kb.
ABSTRACT
Tomatoes in food industry are essential for their flavor and high nutritional value. For Mexico, it is of great importance due to the
spill economic and the generation of direct and indirect jobs. Therefore, post-harvest quality is essential, which can be influenced by
conditions such as temperature, transport, and storage, causing the development of pathogenic fungi that deteriorate its quality and
prevent its commercialization, generating economic losses. The primary control strategy is synthetic fungicides; However, although
they are effective, they adversely affect the environment and humans and develop resistant strains. Because of this, consumers
constantly demand safe and residue-free products. In this sense, this review shows a general overview of the control methods applied
to tomato fruits during their post-harvest stage. Posing its application to the use of fungicides, such as heat treatments, ultraviolet
light, organic and inorganic salts, chitosan, methyl jasmonate, salicylic acid, plant extracts, essential oils, and microorganisms;
considering safe and economic ecological systems that protect against pathogens, increase shelf life and preserve fruit quality.
REFERENCES
Abbey, J. A., Percival, D., Abbey, L., Asiedu, S. K., Prithiviraj, B. & Schilder, A. (2019). Biofungicides as alternative to synthetic fungicide control of grey mould (Botrytis cinerea) – prospects and challenges. Biocontrol Science and Technology, 29(3), 207–228. https://doi.org/10.1080/ 09583157.2018.1548574
Abdel-Rahman, F. A., Rashid, I. A. & Shoala, T. (2020). Nanoactivities of natural nanomaterials rosmarinic acid, glycyrrhizic acid and glycyrrhizic acid ammonium salt against tomato phytopathogenic fungi Alternaria alternata and Penicillium digitatum. Journal of Plant Protection Research, 60(2), 150–160. https://doi.org/10.24425/ jppr.2020.133309
Abu-El Samen, F., Goussous, S. J., Al-Shudifat, A. & Makhadmeh, I. (2016). Reduced sensitivity of tomato early blight pathogen (Alternaria solani) isolates to protectant fungicides, and implication on disease control. Archives of Phytopathology and Plant Protection, 49(5–6), 120–136. https://doi.org/10.1080/03235408.2016.1160641
Aguilar-Veloz, L. M., Calderón-Santoyo, M., Vázquez González, Y. & Ragazzo-Sánchez, J. A. (2020). Application of essential oils and polyphenols as natural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science & Nutrition, 8(6), 2555–2568. https://doi. org/10.1002/fsn3.1437
Alaoui, F.T, Askarne, L., Boubaker, H., Boudyach, E. & Aomar, A. B. (2017). Control of gray mold disease of tomato by post-harvest application of organic acids and salts. Plant Pathology Journal, 16(2), 62–72. https://doi.org/10.3923/ ppj.2017.62.72
Alfaro-Sifuentes, L., Juan, M., Troncoso-Rojas, R., Meca, D. E., Elorrieta, M. A. & Valenzuela, J. L. (2019). Effectiveness of chemical and thermal treatments on control Rhizopus stolonifer fruit infection comparing tomato cultivars with different sensitivities to cracking. International Journal of Environmental Research and Public Health, 16(15), 2754. https://doi.org/10.3390/ijerph16152754
Arah, I. K., Ahorbo, G. K., Anku, E. K., Kumah, E. K. & Amaglo, H. (2016). Post-harvest handling practices and treatment methods for tomato handlers in developing countries: A mini review. Advances in Agriculture, 2016,1–8. https:// doi.org/10.1155/2016/6436945
Arah, I. K., Amaglo, H., Kumah, E. K. & Ofori, H. (2015). Preharvest and post-harvest factors affecting the quality and shelf life of harvested tomatoes: A mini review. International Journal of Agronomy, (2015) 1–6. https:// doi.org/10.1155/2015/478041
Athayde, A. J. A. A., De Oliveira, P. D. L., Guerra, I. C. D., Da Conceição, M. L., De Lima, M. A. B., Arcanjo, N. M. O., Madruga, M. S., Berger, L. R. R. & de Souza, E. L. (2016). A coating composed of chitosan and Cymbopogon citratus (Dc. Ex Nees) essential oil to control Rhizopus soft rot and quality in tomato fruit stored at room temperature. The Journal of Horticultural Science and Biotechnology, 91(6), 582–591. https://doi.org/10.1080/14620316.2016 .1193428
Azman, N. A. I. N., Rostam, N. F. S., Ibrahim, N. F. & Lob, S. (2020). Potential of aqueous ginger extract as fruit coating on tomato. Universiti Malaysia Terengganu Journal of Undergraduate Research, 2(4), 23–30.
Bautista-Baños, S., Ventura-Aguilar, R. I., Correa-Pacheco, Z. & Corona-Rangel, M. L. (2017). Chitosan: a versatile antimicrobial polysaccharide for fruit and vegetables in post-harvest – a review. Revista Chapingo Serie Horticultura, 23(2), 103–121. http://dx.doi.org/10.5154/r. rchsh.2016.11.030
Boonkorn, P. (2016). Impact of hot water soaking on antioxidant enzyme activities and some qualities of storage tomato fruits. International Food Research Journal, 23(3), 934–938.
Bu, J., Yu, Y., Aisikaer, G. & Ying, T. (2013). Postharvest UV-C irradiation inhibits the production of ethylene and the activity of cell wall-degrading enzymes during softening of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and Technology, 86, 337–345. https:// doi.org/10.1016/j.postharvbio.2013.07.026
Carmona-Hernandez, S., Reyes-Pérez, J. J., Chiquito- Contreras, R. G., Rincon-Enriquez, G., Cerdan-Cabrera, C. R. & Hernandez-Montiel, L. G. (2019). Biocontrol of postharvest fruit fungal diseases by bacterial antagonists: A review. Agronomy, 9(3), 121. https://doi.org/10.3390/ agronomy9030121
Carvalho, F. P. (2006). Agriculture, pesticides, food security and food safety. Environmental Science and Policy, 9(7–8), 685–692. https://doi.org/10.1016/j.envsci.2006.08.002
Chapin, L. J. G., Wang, Y., Lutton, E. & Gardener, B. B. M. (2006). Distribution and fungicide sensitivity of fungal pathogens causing anthracnose-like lesions on tomatoes grown in Ohio. Plant Disease, 90(4), 397–403. https://doi. org/10.1094/pd-90-0397
Charles, M. T., Arul, J., Charlebois, D., Yaganza, E. S., Rolland, D., Roussel, D. & Merisier, M. J. (2016). Postharvest UV-C treatment of tomato fruits: Changes in simple sugars and organic acids contents during storage. LWT - Food Science and Technology, 65, 557–564. DOI: https://doi. org/10.1016/j.lwt.2015.08.055
Chitranshi, S., Dubey, N. & Sajjad, M. (2020). Sustainable botanical products for safe post-harvest management of perishable produce: A review. Journal of Horticulture and Postharvest Research 3(1), 125–140. https://doi. org/10.22077/JHPR.2019.2703.1083
Chudinova, E. M., Shkunkova, T. A. & Elansky, S. N. (2020). Fungal pathogens of tomato in South-Western Russia (Krasnodar Territory). Plant Protection News, (3), 210–212. https://doi.org/10.31993/2308-6459-2020-103-3-4998
Cortés-Rivera, H. J., Blancas-Benitez, F. J., Romero-Islas, L. C., Gutiérrez-Martinez, P. & González-Estrada, R. R. (2019). In vitro evaluation of residues of coconut (Cocos nucifera L.) aqueous extracts , against the fungus Penicillium italicum. Emirates Journal of Food and Agriculture, 31(8), 613–617. https://doi.org/10.9755/ejfa.2019.v31.i8.1993
C., Meng, X., Meng, J., Khan, M.I.H., Dai, L., Khan, A., An, X., Zhang J., Huq, T. & Ni, Y. (2019). Chitosan as a preservative for fruits and vegetables : A review on chemistry and antimicrobial properties. Journal of Bioresources and Bioproducts, 4(1), 11–21. https://doi. org/10.21967/jbb.v4i1.189
Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. K., Singh, R., Sharma, K. & Vishwakarma, R. K. (2019). Exploitation of microbial antagonists for the control of post-harvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition, 59(9), 1498–1513. https://doi.org/10.1080/104 08398.2017.1417235
Dyshlyuk, L., Babich, O., Prosekov, A., Ivanova, S., Pavsky, V. & Chaplygina, T. (2020). The effect of post-harvest ultraviolet irradiation on the content of antioxidant compounds and the activity of antioxidant enzymes in tomato. Heliyon, 6(1), https://doi.org/10.1016/j.heliyon.2020.e03288
e-CFR. Electronic Code of Federal Regulations (2020). https:// www.ecfr.gov/cgi-bin/text-idx?SID=186c36f172c2a5f 98f740677f73ae152&node=40:24.0.1.1.27&rgn=div5# se40.26.180_131 Fecha de acceso: 05/02/2020.
Esua, O. J., Chin, N. L., Yusof, Y. A. & Sukor, R. (2019). Effects of simultaneous UV-C radiation and ultrasonic energy postharvest treatment on bioactive compounds and antioxidant activity of tomatoes during storage. Food Chemistry, 270, 113–122. https://doi.org/10.1016/j.foodchem.2018.07.031
EU legislation on MRLs. European Commission (2020). http:// ec.europa.eu/food/plant/ Fecha de acceso: 6/02/2020.
Fagundes, C., Palou, L., Monteiro, A. R. & Pérez-Gago, M. B. (2014). Effect of antifungal hydroxypropyl methylcellulosebeeswax edible coatings on gray mold development and quality attributes of cold-stored cherry tomato fruit. Postharvest Biology and Technology, 92, 1–8. https://doi. org/10.1016/j.postharvbio.2014.01.006 27. Fagundes, C., Palou, L., Monteiro, A. R. & Pérez-Gago, M. B. (2015). Hydroxypropyl methylcellulose-beeswax edible coatings formulated with antifungal food additives to reduce alternaria black spot and maintain post-harvest quality of cold-stored cherry tomatoes. Scientia Horticulturae, 193, 249–257. https://doi.org/10.1016/j.scienta.2015.07.027
FAOSTAT. United Nations Food and Agriculture Organization (2019). Food and agriculture data. http://www.fao.org/ faostat/en/#data/QC Fecha de acceso: 9/10/2019
FRAC. Fungicide Resistance Action Commitee. (2020).
http://www.frac.info/publications/downloads Fecha de acceso: 2/02/2020.
Ghazanfar, M. U., Raza, W., Ahmed, K. S., Qamar, J., Haider, N. & Rasheed, M. H. (2016). Evaluation of different fungicides against Alternaria solani (Ellis & Martin) Sorauer cause of early blight of tomato under laboratory conditions. International Journal of Zoology Studies, 1(5). 08-12
González-Estrada, R .R., Blancas-Benítez, F., Velázquez- Estrada, R. M., Montaño-Leyva, B., Ramos-Guerrero, A., Aguirre-Güitrón, L., Moreno-Hernández, C., Coronado- Partida, L. D., Herrera-González, J. A., Rodríguez-Guzmán, C. A., Del Ángel-Cruz, J. A., Rayón-Díaz, E., Cortés-Rivera, H. J., Santoyo-González, M. A. & Gutiérrez-Martínez, P. (2019). Alternative eco-friendly methods in the control of post-harvest decay of tropical and subtropical fruits. In: Modern Fruit Industry. IntechOpen. (1), 3-24 https://doi. org/10.5772/intechopen.85682
Guo, H., Qiao, B., Ji, X., Wang, X. & Zhu, E. (2020). Antifungal activity and possible mechanisms of submicron chitosan dispersions against Alteraria alternata. Postharvest Biology and Technology, 161, 110883. https://doi.org/10.1016/j. postharvbio.2019.04.009
Gutiérrez-Martínez, P., Ramos-Guerrero, A., Rodríguez-Pereida, C., Coronado-Partida, L., Angulo-Parra, J. & González- Estrada, R. (2018). Chitosan for postharvest disinfection of fruits and vegetables. Postharvest Disinfection of Fruits and Vegetables, 1(12), 231–241. https://doi.org/10.1016/ B978-0-12-812698-1.00012-1
Habib, W., Saab, C., Malek, R., Kattoura, L., Rotolo, C., Gerges, E., Baroudy, F., Pollastro, S., Faretra, F. & De Miccolis Angelini, R. M. (2020). Resistance profiles of Botrytis cinerea populations to several fungicide classes on greenhouse tomato and strawberry in Lebanon. Plant Pathology, 69(8), 1453–1468. https://doi.org/10.1111/ppa.13228
Imahori, Y., Bai, J. & Baldwin, E. (2016). Antioxidative responses of ripe tomato fruit to post-harvest chilling and heating treatments. Scientia Horticulturae, 198, 398–406. https://doi.org/10.1016/j.scienta.2015.12.006
Jabnoun-Khiareddine, H., Abdallah, R., El-Mohamedy, R., Abdel-Kareem, F., Gueddes-Chahed, M., Hajlaoiui, A. & Daami-Remadi, M. (2016). Comparative efficacy of potassium salts against soil-borne and air-borne fungi and their ability to suppress tomato wilt and fruit rots. Journal of Microbial & Biochemical Technology, 8(2), 45–55. https:// doi.org/10.4172/1948-5948.1000261
Jiang, N., Li, Z., Wang, L., Li, H., Zhu, X., Feng, X. & Wang, M. (2019). Effects of ultraviolet-c treatment on growth and mycotoxin production by Alternaria strains isolated from tomato fruits. International Journal of Food Microbiology, 311, 108333 https://doi.org/10.1016/j. ijfoodmicro.2019.108333
Kator, L., Oche, O. D., Hosea, Z. Y. & Agatsa, T. D. (2019). Effect of aqueous extract of moringa leaves on post-harvest shelf life and quality of tomato fruits inoculated with fungal pathogens in Makurdi. Asian Journal of Agricultural and Horticultural Research, 3(1), 1–13. https://doi.org/10.9734/ ajahr/2019/45766
Khatri, D., Panigrahi, J., Prajapati, A. & Bariya, H. (2020). Attributes of Aloe vera gel and chitosan treatments on the quality and biochemical traits of post-harvest tomatoes. Scientia Horticulturae, 259, 108837 https://doi. org/10.1016/j.scienta.2019.108837
Khubone, L. W. & Mditshwa, A. (2018). The effects of UV-C irradiation on post-harvest quality of tomatoes (Solanum lycopersicum). Acta Horticulturae, 1201, 75–82. https:// doi.org/10.17660/ActaHortic.2018.1201.11
Kibar, H. F. & K. Sabir, F. K. (2018). Chitosan coating for extending post-harvest quality of tomatoes (Lycopersicon esculentum Mill.) maintained at different storage. AIMS Agriculture and Food, 3(2), 97–108. https://doi. org/10.3934/agrfood.2018.2.97
Kim, K. H., Kabir, E. & Jahan, S. A. (2017). Exposure to pesticides and the associated human health effects. Science of the total environment, 575, 525-535. https:// doi.org/10.1016/j.scitotenv.2016.09.009
Kong, J., Zhang, Y., Ju, J., Xie, Y., Guo, Y., Cheng, Y., Qian, H., Quek, S. Y. & Yao, W. (2019). Antifungal effects of thymol and salicylic acid on cell membrane and mitochondria of Rhizopus stolonifer and their application in post-harvest preservation of tomatoes. Food Chemistry, 285, 380–388. https://doi.org/10.1016/j.foodchem.2019.01.099
Kumar, N., Tokas, J., Kumar, P. & Singal, H. R. (2018). Effect of salicylic acid on post-harvest quality of tomato (Solanum lycopersicum L .) Fruit. 6(1), 1744–1747.
Lai, J., Cao, X., Yu, T., Wang, Q., Zhang, Y., Zheng, X. & Lu, H. (2018). Effect of Cryptococcus laurentii on inducing disease resistance in cherry tomato fruit with focus on the expression of defense-related genes. Food Chemistry, 254, 208–216. https://doi.org/10.1016/j.foodchem.2018.01.100
Liu, C., Zheng, H., Sheng, K., Liu, W. & Zheng, L. (2018a). Effects of post-harvest UV-C irradiation on phenolic acids, flavonoids, and key phenylpropanoid pathway genes in tomato fruit. Scientia Horticulturae, 241, 107–114. https:// doi.org/10.1016/j.scienta.2018.06.075
Liu, H., Meng, F., Miao, H., Chen, S., Yin, T., Hu, S., Shao, Z., Liu, Y., Gao, L., Zhu, C., Zhang, B. & Wang, Q. (2018b). Effects of post-harvest methyl jasmonate treatment on main health-promoting components and volatile organic compounds in cherry tomato fruits. Food Chemistry, 263, 194–200. https://doi.org/10.1016/j.foodchem.2018.04.124
Liu, S., Fu, L., Tan, H., Jiang, J., Che, Z., Tian, Y. & Chen, G. (2021). Resistance to boscalid in Botrytis cinerea from greenhouse grown tomato. Plant Disease, 105(3) 628-635 https://doi.org/10.1094/PDIS-06-20-1191-RE
Loayza, F. E., Brecht, J. K., Simonne, A. H., Plotto, A., Baldwin, E. A., Bai, J. & Lon-kan, E. (2020). A brief hot-water treatment alleviates chilling injury symptoms in fresh tomatoes. Journal of the Science of Food and Agriculture, 101(1), 54-64 https://doi.org/10.1002/jsfa.10821
Lu, H., Li, L., Limwachiranon, J., Xie, J. & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi. org/10.1016/j.scienta.2016.10.017
Mandal, D., Pautu, L., Hazarika, T. K., Nautiyal, B. P. & Shukla, A. C. (2016). Effect of salicylic acid on physico-chemical attributes and shelf life of tomato fruits at refrigerated storage effect of salicylic acid on physico-chemical attributes and shelf life of tomato fruits at refrigerated storage. International Journal of Bio-resource and Stress Management, 7(6), 1272-1278. https://doi.org//10.23910/ IJBSM/2016.7.6.1683b
Mandal, D. & Shukla, A. C. (2018). Effect of chitosan, wax and particle film coating on shelf life and quality of tomato cv. Samrudhi at ambient storage. Research Journal of Agricultural Sciences, 9, 111–116.
V., Karthik, R., Ramachandran, S. & Rajagopal, S. (2018). Chitosan applications in food industry. In Biopolymers for Food Design. 20(15) 469–491. Elsevier. https://doi.org/10.1016/B978-0-12-811449-0.00015-3
Mansourbahmani, S., Ghareyazie, B., Kalatejari, S., Mohammadi, R. S. & Zarinnia, V. (2017). Effect of post-harvest UV-C irradiation and calcium chloride on enzymatic activity and decay of tomato (Lycopersicon esculentum L.) fruit during storage. Journal of Integrative Agriculture, 16(9), 2093–2100. https://doi.org/10.1016/ S2095-3119(16)61569-1
Martínez-Ruiz, F. E., Cervantes-Díaz, L., Aíl-Catzím, C. E., Hernández-Montiel, L. G., Sánchez, C. L. D. T. & Rueda- Puente, E. O. (2016). Hongos fitopatógenos asociados al tomate (Solanum lycopersicum l.) en la zona árida del noroeste de México: la importancia de su diagnóstico. European Scientific Journal, 12(18), 232. https://doi. org/10.19044/esj.2016.v12n18p232
Matyjaszczyk, E. (2015). Prevention methods for pest control and their use in Poland. Pest management science, 71(4), 485-491.
Mditshwa, A., Magwaza, L. S., Tesfay, S. Z. & Mbili, N. C. (2017). Effect of ultraviolet irradiation on post-harvest quality and composition of tomatoes: a review. Journal of Food Science and Technology, 54(10), 3025–3035. https:// doi.org/10.1007/s13197-017-2802-6
Olaiya, C. O., Karigidi, K. O., Ogunleye, A. B. & Kareem, O. R. (2016). Possible enhancement of nutrients and antioxidant capacity of two tropical fruits by UV radiation treatment. Advances in Life Science and Technology. 46, 80-85
Pagno, C. H., Castagna, A., Trivellini, A., Mensuali-Sodi, A., Ranieri, A., Ferreira, E. A., Rios, A. de O. & Flôres, S. H. (2018). The nutraceutical quality of tomato fruit during domestic storage is affected by chitosan coating. Journal of Food Processing and Preservation, 42(1), e13326. https:// doi.org/10.1111/jfpp.13326
Palou, L., Ali, A., Fallik, E. & Romanazzi, G. (2016). GRAS, plant- and animal-derived compounds as alternatives to conventional fungicides for the control of post-harvest diseases of fresh horticultural produce. Postharvest Biology and Technology, 122, 41–52. https://doi.org/10.1016/j. postharvbio.2016.04.017
Pane, C., Fratianni, F., Parisi, M., Nazzaro, F. & Zaccardelli, M. (2016). Control of Alternaria post-harvest infections on cherry tomato fruits by wild pepper phenolic-rich extracts. Crop Protection, 84, 81–87. https://doi.org/10.1016/j. cropro.2016.02.015
Parvin, N., Kader, M. A., Huque, R., Molla, M. E. & Khan, M. A. (2018). Extension of shelf-life of tomato using irradiated chitosan and its physical and biochemical characteristics. International Letters of Natural Sciences, 67, 16–23. https:// doi.org/10.18052/www.scipress.com/ILNS.67.16
Pataro, G., Sinik, M., Capitoli, M. M., Donsì, G. & Ferrari, G. (2015). The influence of post-harvest UV-C and pulsed light treatments on quality and antioxidant properties of tomato fruits during storage. Innovative Food Science & Emerging Technologies, 30, 103–111. https://doi.org/10.1016/j. ifset.2015.06.003
Patel, N. A., Dange, S. R. S. & Patel, S. I. (2005). Efficacy of chemicals in controlling fruit rot of tomato caused by Alternaria tomato. Indian Journal of Agricultural Research, 39(1), 72–75.
Peralta-Ruiz, Y., Tovar, C. D. G., Sinning-Mangonez, A., Coronell, E. A., Marino, M. F. & Chaves-Lopez, C. (2020). Reduction of post-harvest quality loss and microbiological decay of tomato “chonto” (Solanum lycopersicum L.) using chitosan-e essential oil-based edible coatings under low-temperature storage. Polymers, 12(8), 1822. https:// doi.org/10.3390/polym12081822
Pinheiro, J., Alegria, C., Abreu, M., Gonçalves, E. M. & Silva, C. L. M. (2015). Use of UV-C post-harvest treatment for extending fresh whole tomato (Solanum lycopersicum, cv. Zinac) shelf-life. Journal of Food Science and Technology, 52(8), 5066–5074. https://doi.org/10.1007/s13197-014- 1550-0
Pinheiro, J., Ganhao, R., Goncalves E. M. & Silva, C. L. M. (2019). Assessment of thermosonication as post-harvest treatment applied on whole tomato fruits: Optimization and validation. Foods 8(12) 649. https://doi.org/10.3390/ foods8120649
Pirozzi, A., Del Grosso, V., Ferrari, G. & Donsì, F. (2020). Edible coatings containing oregano essential oil nanoemulsion for improving post-harvest quality and shelf life of tomatoes. Foods, 9(11), 1605. https://doi.org/10.3390/foods9111605
Poveda, J. (2020). Use of plant-defense hormones against pathogen-diseases of post-harvest fresh produce. Physiological and Molecular Plant Pathology, 111, 101521. https://doi.org/10.1016/j.pmpp.2020.101521
Rani, S., Singh, R. & Gupta, S. (2017). Development of integrated disease management module for early blight of tomato in Jammu. Journal of Pharmacognosy and Phytochemistry, 6(2), 268–273.
Rao, J., Chen, B. & McClements, D. J. (2019). Improving the efficacy of essential oils as antimicrobials in foods: mechanisms of action. Annual Review of Food Science and Technology, 10(1), 365–387. https://doi.org/10.1146/ annurev-food-032818-121727
Rashid, T. S., Awla, H. K. & Sijam, K. (2018). Antifungal effects of Rhus coriaria L. fruit extracts against tomato anthracnose caused by Colletotrichum acutatum. Industrial Crops and Products, 113, 391–397. https://doi.org/10.1016/j. indcrop.2018.01.066
Rguez, S., Djébali, N., Slimene, I. B., Abid, G., Hammemi, M., Chenenaoui, S., Bachkouel, S., Daami-Remadi, M., Ksouri, R. & Hamrouni-Sellami, I. (2018). Cupressus sempervirens essential oils and their major compounds successfully control post-harvest grey mould disease of tomato. Industrial Crops and Products, 123, 135–141. https://doi.org/10.1016/j.indcrop.2018.06.060
Rives-Castillo, S. C. H., Ventura-Aguilar, R. I., Hernández- López, M. & Bautista-Baños, S. (2018). Extensión de la vida de anaquel y conservación postcosecha de jitomates var. ´Kenton´ mediante la aplicación de recubrimientos biodegradables. Acta Agricola y Pecuaria, 4(3), 80–91. https://dialnet.unirioja.es/servlet/articulo?codigo=6788414
Rodrigues, B. B. & Kakde, U. B. (2019). Post harvest fungi associated with Solanum lycopersicum (Tomato) fruits collected from different markets of Mumbai. International Interdisciplinary Research Journa, 9(1). 52-60.
Rodríguez-Guzmán, C. A., González-Estrada, R. R., Bautista- Baños, S. & Gutiérrez-Martínez, P. (2019). Efecto del quitosano en el control de Alternaria sp. en plantas de jitomate en invernadero. TIP Revista Especializada en Ciencias Químico-Biológicas, 22, 1–7. https://doi. org/10.22201/fesz.23958723e.2019.0.161
Romanazzi, G., Feliziani, E., Baños, S. B. & Sivakumar, D. (2017). Shelf life extension of fresh fruit and vegetables by chitosan treatment. Critical Reviews in Food Science and Nutrition, 57(3), 579–601. https://doi.org/10.1080/10 408398.2014.900474
Romanazzi, G., Feliziani, E. & Sivakumar, D. (2018). Chitosan, a biopolymer with triple action on post-harvest decay of fruit and vegetables: Eliciting, antimicrobial and film-forming properties. Frontiers in Microbiology, 9, 1–9. https://doi. org/10.3389/fmicb.2018.02745
Romanazzi, G., Sanzani, S. M., Bi, Y., Tian, S., Gutiérrez- Martínez, P. & Alkan, N. (2016a). Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biology and Technology, 122, 82–94. https:// doi.org/10.1016/j.postharvbio.2016.08.003
Romanazzi, G., Smilanick, J. L., Feliziani, E. & Droby, S. (2016b). Integrated management of post-harvest gray mold on fruit crops. Postharvest Biology and Technology, 113, 69–76. https://doi.org/10.1016/j.postharvbio.2015.11.003
Ruiz-Martínez, J., Aguirre-Joya, J. A., Rojas, R., Vicente, A., Aguilar-González, M. A., Rodríguez-Herrera, R., Alvarez- Perez, O. B., Torres-León, C. & Aguilar, C. N. (2020). Candelilla wax edible coating with Flourensia cernua bioactives to prolong the quality of tomato fruits. Foods, 9(9), 1303. https://doi.org/10.3390/foods9091303
Sajad, A. M. & Jamaluddin Abid, H. Q. (2017). Fungi associated with the spoilage of post harvest tomato fruits and their frequency of occurences in different markets of jabalpur, Madhya-Pradesh, India. Int J. Cur. Res, Rev., 9(5), 12–16.
Salas-Méndez, E. de J., Vicente, A., Pinheiro, A. C., Ballesteros, L. F., Silva, P., Rodríguez-García, R., Hernández-Castillo, F. D., Díaz-Jiménez, M. de L. V., Flores-López, M. L., Villarreal-Quintanilla, J. Á., Peña-Ramos, F. M., Carrillo- Lomelí, D. A. & Jasso de Rodríguez, D. (2019). Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biology and Technology, 150, 19–27. https://doi.org/10.1016/j. postharvbio.2018.12.008
Shama, G. & Alderson, P. (2005). UV hormesis in fruits: A concept ripe for commercialisation. Trends in Food Science and Technology, 16(4), 128–136. https://doi.org/10.1016/j. tifs.2004.10.001
Shamurailatpam, D. & Kumar A. (2020). A review on recent methods to control early blight of tomato (Solanum lycopersicum L.). Plant Cell Biotechnology and Molecular Biology, 21, 136-148.
Sharif, M. A., Kumer, A., Ahmed, M. B. & Paul, S. (2018). Chitosan is a new target of chemical replacement to formalin in food preservative. International Journal of Chemical Studies, 6(1), 757–760.
Shenglong, D., Jihong, Z., Shaoyang, C., Shuang, M. & Li, Z. (2019). The combined effect of 1-methylcyclopropene and citral suppressed post-harvest grey mould of tomato fruit by inhibiting the growth of Botrytis cinerea. Journal of Phytopathology, 167(2), 123–134. https://doi.org/10.1111/ jph.12780
Shridhar, B. P., Sharma, M., Gupta, S. K. & Sharma, S. K. (2018). New generation fungicides for the management of buckeye rot of tomato. Indian Phytopathology, 71(4), 621–625. https://doi.org/10.1007/s42360-018-0079-y
SIAP. Servicio de Información Agroalimentaria y Pesquera. (2019). Atlas agroalimentario 2018. https://www.gob.mx/ siap/acciones-y-programas/atlas-agroalimentario-2018 Fecha de acceso: 06/10/2019.
Singh, J., Roy, B., Mishra, S. & Garg, R. (2020). Post-harvest treatment for preserving antioxidant properties and total phenolic content of tomatoes and litchis. Journal of Thematic Analysis, 1(1), 125–135.
Sivakumar, D. & Bautista-Baños, S. (2014). A review on the use of essential oils for post-harvest decay control and maintenance of fruit quality during storage. Crop Protection, 64, 27–37. https://doi.org/10.1016/j.cropro.2014.05.012
Sivakumar, D. & Fallik, E. (2013). Influence of heat treatments on quality retention of fresh and fresh-cut produce. Food Reviews International, 29(3), 294–320. https://doi.org/10 .1080/87559129.2013.790048
Sree, K. P., Sree, M. S. & Samreen, P. S. (2020). Application of chitosan edible coating for preservation of tomato. International Journal of Chemical Studies, 8(4), 3281–3285. https://doi.org/10.22271/chemi.2020.v8.i4ao.10157
Sucharitha, K. V., Beulah, A. M. & Ravikiran, K. (2018). Effect of chitosan coating on storage stability of tomatoes (Lycopersicon esculentum Mill). In International Food Research Journal, 25(1), 93-99.
Sultana, N., Zakir, H. M., Parvin, M. A., Sharmin, S. & Seal, H. P. (2019). Effect of chitosan coating on physiological responses and nutritional qualities of tomato fruits during post-harvest storage. Asian Journal of Advances in Agricultural Research, 10(2), 1–11. https://doi.org/10.9734/ ajaar/2019/v10i230027
Sun, C., Fu, D., Jin, L., Chen, M., Zheng, X. & Yu, T. (2018). Chitin isolated from yeast cell wall induces the resistance of tomato fruit to Botrytis cinerea. Carbohydrate Polymers, 199, 341–352. https://doi.org/10.1016/j. carbpol.2018.07.045
Tadesse, T. N. & Abtew, W. G. (2016). Effect of hot water treatment on reduction of chilling injury and keeping quality in tomato (Solanum lycopersicum L.) fruits. Journal of Stored Products and Postharvest Research, 7(7), 61-68. https://academicjournals.org/journal/JSPPR/ article-abstract/985D59660444
Tang, Q., Zhu, F., Cao, X., Zheng, X., Yu, T. & Lu, L. (2019). Cryptococcus laurentii controls gray mold of cherry tomato fruit via modulation of ethylene-associated immune responses. Food Chemistry, 278, 240–247. https://doi. org/10.1016/j.foodchem.2018.11.051
Tauxe, R. V. (2001). Food safety and irradiation: protecting the public from foodborne infections. Emerging Infectious Diseases, 7(7), 516–521. https://doi.org/10.3201/ eid0707.017706
The Japan Food Chemical Research Foundation. (2020). Search engine for MRLs. http://db.ffcr.or.jp/front/food_group_ comp Fecha de acceso: 8/02/2020.
Venditti, T., D’hallewin, G., Ladu, G., Petretto, G. L., Pintore, G. & Labavitch, J. M. (2018). Effect of NaHCO3 treatments on the activity of cell-wall-degrading enzymes produced by Penicillium digitatum during the pathogenesis process on grapefruit. Journal of the Science of Food and Agriculture, 98(13), 4928–4936. https://doi.org/10.1002/jsfa.9025
Vincent, H., Wiersema, J., Kell, S., Fielder, H., Dobbie, S., Castañeda-Álvarez, N. P., Guarino, L., Eastwood, R., Leόn, B. & Maxted, N. (2013). A prioritized crop wild relative inventory to help underpin global food security. Biological Conservation, 167, 265–275. https://doi.org/10.1016/j. biocon.2013.08.011
Wanasinghe, W. U. T. & Damunupola, J. W. (2020). Effect of UV-C hormesis in regulating anthracnose disease and post-harvest quality of tomato. Journal of Agricultural Sciences – Sri Lanka, 15(3), 318. https://doi.org/10.4038/ jas.v15i3.9024
Wang, L., Baldwin, E., Luo, W., Zhao, W., Brecht, J. & Bai, J. (2019a) Key tomato volatile compounds during postharvest ripening in response to chilling and pre-chilling heat treatments. Postharvest Biology and Technology, 154, 11–20. https://doi.org/10.1016/j.postharvbio.2019.04.013
Wang, X. M., Du, X.F., Nong, Y.U.A.N. & Shao, H. (2019b). Growth-inhibition of 12 fungicides against Botrytis cinerea in tomato and their preventive effects in field. Pakistan Journal of Botany, 51(6), 2291–2294. https://doi. org/10.30848/PJB2019-6(32)
Wang, Y., Yu, T., Xia, J., Yu, D., Wang, J. & Zheng, X. (2010). Biocontrol of post-harvest gray mold of cherry tomatoes with the marine yeast Rhodosporidium paludigenum. Biological Control, 53(2), 178–182. https://doi.org/10.1016/j. biocontrol.2010.01.002 107. Wei, Y., Xu, M., Wu, H., Tu, S., Pan, L. & Tu, K. (2016). Defense response of cherry tomato at different maturity stages to combined treatment of hot air and Cryptococcus laurentii. Postharvest Biology and Technology, 117, 177–186. https:// doi.org/10.1016/j.postharvbio.2016.03.001
Wei, Y., Zhou, D., Wang, Z., Tu, S., Shao, X., Peng, J., Pan, L. & Tu, K. (2018). Hot air treatment reduces post-harvest decay and delays softening of cherry tomato by regulating gene expression and activities of cell wall-degrading enzymes. Journal of the Science of Food and Agriculture, 98(6), 2105–2112. https://doi.org/10.1002/jsfa.8692
Xie, G., Tan, S. & Yu, L. (2012). Morphological and molecular identification of pathogenic fungal of post-harvest tomato fruit during storage. African Journal of Microbiology Research, 6(22), 4805-4809. https://doi.org/10.5897/ AJMR12.596
Xing, Y., Xu, Q., Li, X., Chen, C., Ma, L., Li, S., Che, Z. & Lin, H. (2016). Chitosan-based coating with antimicrobial agents: Preparation, property, mechanism, and application effectiveness on fruits and vegetables. International Journal of Polymer Science, 2016 1-24. https://doi. org/10.1155/2016/4851730
Yan, L., Zheng, H., Liu, W., Liu, C., Jin, T., Liu, S. & Zheng, L. (2021). UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage. Food Chemistry, 338, 128126. https://doi.org/10.1016/j. foodchem.2020.128126
Yasser, M. M., Marzouk, M. M., Kamel, T. A. & Naaffa, A. M. A. (2019). Effect of hot water treatment on post-harvest fruit rots and quality of tomato fruits. Plant Archives, 19(2), 2325–2334.
Youssef, K., Sanzani, S. M., Ligorio, A., Ippolito, A. & Terry, L. A. (2014). Sodium carbonate and bicarbonate treatments induce resistance to post-harvest green mould on citrus fruit. Postharvest Biology and Technology, 87, 61–69. https:// doi.org/10.1016/j.postharvbio.2013.08.006
Zhang, W. & Jiang, W. (2019). UV treatment improved the quality of post-harvest fruits and vegetables by inducing resistance. Trends in Food Science & Technology, 92, 71–80. https://doi.org/10.1016/j.tifs.2019.08.012
Zhang, X., Sheng, J., Li, F., Meng, D. & Shen, L. (2012). Methyl jasmonate alters arginine catabolism and improves postharvest chilling tolerance in cherry tomato fruit. Postharvest Biology and Technology, 64(1), 160–167. https://doi. org/10.1016/j.postharvbio.2011.07.006
Zong, Y., Liu, J., Li, B., Qin, G. & Tian, S. (2010). Effects of yeast antagonists in combination with hot water treatment on postharvest diseases of tomato fruit. Biological Control, 54(3), 316–321. https://doi.org/10.1016/j.biocontrol.2010.06.003