2021, Number 1
<< Back Next >>
TIP Rev Esp Cienc Quim Biol 2021; 24 (1)
Synthesis of Carbon Nanostructures through the Chemical Vapor Deposition Technique: An Overview
Ruiz HAR, Gutiérrez CA, Luna D, Vega JF, Patiño GG, Arceta LA, Campos-Delgado J
Language: Spanish
References: 62
Page:
PDF size: 262.95 Kb.
ABSTRACT
The boom that nanotechnology has had over the last 3 decades is undeniable. Carbon nanostructured forms are mainly
responsible for this interest in nanomaterials, since historically they paved the way to the study of nanomaterials with
the discovery of fullerenes in 1985 and carbon nanotubes in 1991. Although there are various techniques to produce
nanomaterials, chemical vapor deposition (CVD) is particularly valuable as it allows the production of a great variety
of carbon nanostructures, it is versatile, scalable, easy to implement and of a relatively low-cost. This review article
highlights the importance of CVD and details its principles, conditions and operation parameters, as well as the main
variations of this technique. Detailed conditions are described for the production of fullerenes, nano-onions, carbon
nanotubes, nanospheres, graphene, and others, emphasizing the specific parameters for each synthesis.
REFERENCES
Al-Sarraf, A., Khodair, Z., Manssor, M., Al Khader, R. & Shaban, A. (2018). Preparation and characterization of ZnO nanotripods and nanoflowers by atmospheric pressure chemical vapor deposition (APCVD) technique. AIP Conference Proceedings, 1968(1), 030005. DOI: 10.1063/1.5039192.
Alarcón-Salazar, J., López-Estopier, R., Quiroga-González, E., Morales-Sánchez, A., Pedraza-Chávez, J., Zaldívar-Huerta, I. E. & Aceves-Mijares, M. (2016). Silicon-rich oxide obtained by low-pressure chemical vapor deposition to develop silicon light sources. En Neralla, S. (Ed.). Chemical Vapor Deposition—Recent Advances and Applications in Optical, Solar Cells and Solid State Devices. (pp. 159-181) Croacia: InTech. DOI: 10.5772/63012.
Avouris, P. & Dimitrakopoulos, C. (2012). Graphene: Synthesis and Applications. Materials Today, 15(3), 86–97. DOI: 10.1016/S1369-7021(12)70044-5.
Barankin, M. D., Gonzalez, E., Ladwig, A. M. & Hicks, R. F. (2007). Plasma-enhanced chemical vapor deposition of zinc oxide at atmospheric pressure and low temperature. Solar Energy Materials and Solar Cells, 91(10), 924–930. DOI: 10.1016/j.solmat.2007.02.009.
Benelmekki, M. & Erbe, A. (2019). Nanostructured Thin Films– Background, Preparation and Relation to the Technological Revolution of the 21st Century. En Benelmekki, M. & Erbe, A. (Eds.). Frontiers of Nanoscience. (pp. 1–34) New York: Elsevier. DOI: 10.1016/B978-0-08-102572-7.00001-5.
Campos-Delgado, J., Romo-Herrera, J., Jia, X., Cullen, D. A., Muramatsu, H., Kim, Y. A., Hayashi, T., Ren, Z., Smith, D. J., Okuno, Y., Ohba, T., Kanoh, H., Kaneko, K., Endo, M., Terrones, H., Dresselhaus, M. S. & Terrones, M. (2008). Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nanoletters, 8(9), 2773-2778. DOI: 10.1021/nl801316d.
Campos-Delgado, J., Farhat, H., Kim, Y.A., Reina, A., Kong, J., Endo, M., Muramatsu, H., Hayashi, T., Terrones, H., Terrones, M. & Dresselhaus, M. S. (2009). Resonant Raman study on bulk and isolated graphitic nanoribbons. Small, 5(23), 2698-2702. DOI: 10.1002/smll.200901059.
Chen, X.H., Deng, F.M., Wang, J.X., Yang, H.S., Wu, G.T., Zhang, X.B., Peng, J.C. & Li, W.Z. (2001). New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition. Chemical Physics Letters, 336(3-4),201-204. DOI: 10.1016/S0009-2614(01)00085-9.
Choi, K. & Rhee, S. (2001). Effect of Carrier Gas on Chemical Vapor Deposition of Copper with (Hexafluoroacetylacetonate)Cu (I)(3,3-Dimethyl-1-butene). Journal of The Electrochemical Society. 148(7), C473-C478. DOI: 10.1149/1.1375168.
Chuang, A. T., Boskovic, B. O. & Robertson, J. (2006). Freestanding carbon nanowalls by microwave plasmaenhanced chemical vapour deposition. Diamond and Related Materials, 15 (4-8), 1103-1106. DOI: 10.1016/j. diamond.2005.11.004.
Díaz-Chacóna, L. C., Arévalo-Festerb, J. E., Plaza-Pirelab, E. V., Atencio-Fuenmayora, R. & Zulia-Venezuela, E. (2011). Caracterización por Microscopía Electrónica de Barrido de Micro y Nanoesferas de Carbono Obtenidas a Partir de Naftaleno Empleando la Técnica de Deposición Química en Fase de Vapor. Acta Microscópica, 20(1), 54- 59. Disponible en: https://www.acta-microscopica.org/acta/ article/view/419/364.
Dong, Y., Guo, S., Mao, H., Xu, C., Xie, Y., Deng, J., Wang, L., Du, Z., Xiong, F. & Sun, J. (2020). In Situ Growth of CVD Graphene Directly on Dielectric Surface toward Application. ACS Applied Electronic Materials, 2(1), 238- 246. DOI: 10.1021/acsaelm.9b00719.
Dresselhaus, M. S., Dresselhaus, G., Eklund, P. C. & Rao, A. M. (2000). Carbon nanotubes. En Andreoni, W. (Ed.). The physics of fullerene-based and fullerene-related materials (pp. 331-379). Dordrecht: Springer. DOI: 10.1007/978-94-011-4038-6_9.
Fan, L., Zhu, M., Lee, X., Zhang, R., Wang, K., Wei, J., Zhong, M., Wu, D. & Zhu, H. (2013). Direct synthesis of graphene quantum dots by chemical vapor deposition. Particle and Particle Systems Characterization, 30(9), 764-769. DOI: 10.1002/ppsc.201300125.
Frederick N. (2019). Cn Fullerenes. Recuperado de: https:// nanotube.msu.edu/fullerene/fullerene-isomers.html
Gao, Y., Zhou, Y. S., Qian, M., He, X. N., Redepenning, J., Goodman, P., Li, H. M., Jiang, L. & Lu, Y. F. (2012). Chemical activations of carbon nano-onions for high-rate supercapacitor electrodes. Carbon, 51(1), 52-58. DOI: 10.1016/j.carbon.2012.08.009.
Georgakilas, V., Perman, J. A., Tucek, J. & Zboril, R. (2015). Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chemical Reviews, 115(11), 4744-4822. DOI: 10.1021/cr500304f.
Hashmi, M. A. & Lein, M. (2018). Carbon Nano-onions as Photosensitizers: Stacking-Induced Red-Shift. The Journal of Physical Chemistry C,122(4), 2422–2431. DOI: 10.1021/ acs.jpcc.7b11421.
Hawkins, M. R. & Robinson, M. (1993). U.S. Patent No. 5,221,556. Washington, DC: U.S. Patent and Trademark Office.
Hiraki, H., Jiang, N., Wang, H. X. & Hiraki, A. (2006). Electron emission from nano-structured carbon composite materials—An important role of the interface for enhancing the emission. Journal De Physique IV (Proceedings),132(1), 111-115. DOI: 10.1051/jp4:2006132022.
Hussain, A., Liao, Y., Zhang, Q., Ding, E. X., Laiho, P., Ahmad, S., Wei, N., Tian, Y., Jiang, H. & Kauppinen, E. I. (2018). Floating catalyst CVD synthesis of single walled carbon nanotubes from ethylene for high performance transparent electrodes. Nanoscale, 10(20), 9752–9759. DOI: 10.1039/c8nr00716k.
Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354(6348), 56-58. DOI: 10.1038/354056a0.
Iijima, S. & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature, 363(6430), 603-605. DOI: 10.1038/363603a0.
Ionescu, M. I., Zhang, Y., Li, R., Sun, X., Abou-Rachid, H. & Lussier, L. S. (2011). Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Applied Surface Science, 257(15), 6843-6849. DOI: 10.1016/j.apsusc.2011.03.011.
Jacobberger, R. M., Machhi, R., Wroblewski, J., Taylor, B., Gillian-Daniel, A. L. & Arnold, M. S. (2015). Simple Graphene Synthesis via Chemical Vapor Deposition. Journal of Chemical Education, 92(11), 1903–1907. DOI: 10.1021/acs.jchemed.5b00126.
Kleckley, S., Wang, H., Oladeji, I., Chow, L., Daly, T. K., Buseck, P. R., Solouki, T. & Marshall, A. (1998). Fullerenes and Polymers Produced by the Chemical Vapor Deposition Method. ACS Symposium Series, 681(1), 51–60. DOI: 10.1021/bk-1998-0681.ch006.
Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. (1985). C60: buckmisterfullerene. Nature, 318(6042), 162-163. DOI: 10.1038/318162a0.
Kumar M. & Ando Y. (2011). Carbon Nanotube Synthesis and Growth Mechanism. Nanotechnology Perceptions, 6(1), 147-170. DOI: 10.4024/N02KU10A.ntp.06.01.
Li, M., Wang, C., O’Connell, M. J. & Chan, C. K. (2015). Carbon nanosphere adsorbents for removal of arsenate and selenate from water. Environmental Science: Nano, 2(3), 245-250. DOI: 10.1039/c4en00204k.
Liu, Y., Vander Wal, R. L. & Khabashesku, V. N. (2007). Functionalization of Carbon Nano-onions by Direct Fluorination. Chemistry of Materials, 19(4), 778-786. DOI: 10.1021/cm062177j.
Manini N. (2020). 3D Structures. Recuperado de: http://materia. fisica.unimi.it/manini/dida/structures.html Mattox, D. M. (2018). Plasmas and Plasma Enhanced CVD. En
Mattox, D. M. (Ed.). The Foundations of Vacuum Coating Technology. (pp. 61–86) New York: Elsevier.DOI: 10.1016/ b978-0-12-813084-1.00003-0.
Maury, F., Duminica, F. D. & Senocq, F. (2007). Optimization of the vaporization of liquid and solid CVD precursors: Experimental and modeling approaches. Chemical Vapor Deposition, 13(11), 638-643. DOI: 10.1002/ cvde.200706600.
McKee, G. S., Deck, C. P. & Vecchio, K. S. (2009). Dimensional control of multi-walled carbon nanotubes in floating-catalyst CVD synthesis.Carbon, 47(8), 2085-2094. DOI: 10.1016/j. carbon.2009.03.060.
Mouras, S., Hamwi, A., Djurado, D. & Cousseins, J. (1987). New synthesis of first stage graphite intercalation compounds with fluorides. Journal of Fluorine Chemistry, 35(1), 151. DOI: 10.1016/0022-1139(87)95120-7.
Muangrat, W., Wongwiriyapan, W., Morimoto, S. & Hashimoto, Y. (2019). Graphene nanosheet-grafted double-walled carbon nanotube hybrid nanostructures by two-step chemical vapor deposition and their application for ethanol detection. Scientific Reports, 9(1), 1–9. DOI: 10.1038/ s41598-019-44315-y.
Nieto-Márquez, A., Romero, R., Romero, A. & Valverde, J. L. (2011). Carbon nanospheres: synthesis, physicochemical properties and applications. Journal of Materials Chemistry, 21(6), 1664-1672. DOI: 10.1039/c0jm01350a.
Noor, N., Chew, C., Bhachu, C., Waugh, M., Carmalt, C. & Parkin, I. (2015). Influencing FTO thin film growth with thin seeding layers: a route to microstructural modification. Journal of Materials Chemistry C, 3(36), 9359-9368. DOI: 10.1039/C5TC02144H.
Novoselov, K. S., Fal´ko, V. I., Colombo, L., Gellert, P. R., Schwab, M. G. & Kim, K. (2012). A roadmap for graphene. Nature, 490(7419), 192-200. DOI: 10.1038/ nature11458.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666-669. DOI: 10.1126/science.1102896.
Nozaki, T., Ohnishi, K., Okazaki, K. & Kortshagen, U. (2007). Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD. Carbon, 45(2), 364–374. DOI: 10.1016/j. carbon.2006.09.009.
O’Brien, P., Pickett, N. L. & Otway, D. J. (2002). Developments in CVD delivery systems: A chemist’s perspective on the chemical and physical interactions between precursors. Chemical Vapor Deposition, 8(6), 237-249. DOI: 10.1002/1521-3862(20021203)8:6<237::AIDCVDE237> 3.0.CO;2-O.
Pottathara, Y. B., Grohens, Y., Kokol, V., Kalarikkal, N. & Thomas, S. (2019). Synthesis and Processing of Emerging Two-Dimensional Nanomaterials. En Pottathara, Y., Thomas, S., Kalarikkal, N., Grohens, Y. & Kokol, V. (Eds.). Nanomaterials Synthesis. (pp. 1–25) New York: Elsevier. DOI: 10.1016/B978-0-12-815751-0.00001-8.
Ruan, G., Sun, Z., Peng, Z. & Tour, J. M. (2011). Growth of graphene from food, insects and waste. ACS Nano, 5(9), 7601-7607. DOI: 10.1021/nn202625c.
Ruan, S., Zhu, B., Zhang, H., Chen, J., Shen, S., Qian, J., He, Q. & Gao, H. (2014). A simple one-step method for preparation of fluorescent carbon nanospheres and the potential application in cell organelles imaging. Journal of Colloid and Interface Science, 422(1), 25-29. DOI: 10.1016/j.jcis.2014.02.006.
Santiago, D., Rodríguez, G. G., Palkar, A., Barraza, D., Galvan, D. H., Casillas, G., Mayoral, A., Yacamán, M. J., Echegoyen, L. & Cabrera C. R. (2012). Platinum Electrodeposition on Unsupported Carbon Nano-Onions. Langmuir, 28(49), 17202-17210. DOI: 10.1021/la3031396.
Scott, L. T., Boorum, M. H., McMahon, B. J., Hagen, S., Mack, J., Blank, J., Wegner, H. & De Meijere, A. (2002). A rational chemical synthesis of C60. Science, 295(5559), 1500–1503. DOI: 10.1126/science.1068427.
Sengupta, J. (2018). Carbon Nanotube Fabrication at Industrial Scale. En Hussain, C. M. (Ed.). Handbook of Nanomaterials for Industrial Applications. (pp. 172–194) New York: Elsevier. DOI: 10.1016/b978-0-12-813351-4.00010-9.
Serp, P., Feurer, R., Kalck, P., Kihn, Y., Faria, J. L. & Figueiredo, J. L. (2001). A chemical vapour deposition process for the production of carbon nanospheres. Carbon, 39(4), 615-628. DOI: 10.1016/S0008-6223(00)00324-9.
Soldano, C., Mahmood, A. & Dujardin, E. (2010). Production, properties and potential of graphene. Carbon, 48(8), 2127- 2150. DOI: 10.1016/j.carbon.2010.01.058.
Takehara, H., Fujiwara, M., Arikawa, M., Diener, M. D. & Alford, J. M. (2005). Experimental study of industrial scale fullerene production by combustion synthesis. Carbon, 43(2), 311-319. DOI: 10.1016/j.carbon.2004.09.017.
Teo, K., Singh, C., Chhowalla, M. & Milne, W. (2003). Catalytic Synthesis of Carbon Nanotubes and Nanofibers. En Nalwa, H. (Eds.). Encyclopedia of Nanoscience and Nanotechnology. Vol. 1, (pp. 665–686) California: American Scientific Publishers. Disponible en: http:// nanotubes.rutgers.edu/PDFs/Catalytic%20Synthesis%20 of%20Carbon%20Nanotubes%20and%20Nanofibers.pdf.
The Nobel Prize. (2010). The Nobel Prize in Physics 2010. Recuperado de https://www.nobelprize.org/prizes/ physics/2010/summary/
Ugarte, D. (1992). Curling and closure of graphitic networks under electron-beam irradiation. Nature, 359(6397), 707- 709. DOI: 10.1038/359707a0.
Vahlas, C., Caussat, B., Senocq, F., Gladfelter, W. L., Aloui, L. & Moersch, T. (2007). A delivery system for precursor vapors based on sublimation in a fluidized bed. Chemical Vapor Deposition, 13(2-3), 123-129. DOI: 10.1002/1521-3862(20021203)8:6<237::AIDCVDE237> 3.0.CO;2-O.
Veiga, R. G. A., Tomanek, D. & Frederick, N. (2020). Tube ASP: Carbon nanotube generation applet. Michigan State University. Obtenido de: https://nanotube.msu.edu/ tubeASP/.
VESTA. (2006-2020). Momma K., Izumi F. (Versión 3.5.5) [Aplicación de ordenador] Descargado de: https://jpminerals. org/vesta/en/download.html.
Wang, J., Hu, Z., Xu, J. & Zhao, Y. (2014). Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Materials,6(2), 1-11. DOI: 10.1038/am.2013.79.
Yuan, D. (2008). Property control of single walled carbon nanotubes and their devices (Tesis doctoral). Duke University, Durham, NC.
Zhang, C., Li, J., Shi, C., Liu, E., Du, X., Feng, W. & Zhao, N. (2011). The efficient synthesis of carbon nano-onions using chemical vapor deposition on an unsupported Ni–Fe alloy catalyst. Carbon, 49(4), 1151-1158. DOI: 10.1016/j. carbon.2010.11.030.
Zhang, W., Fu, J., Chang, J., Zhang, M., Yang, Y. & Gao, L. (2015). Fabrication and purification of carbon nano onions. Carbon, 82(1), 610. DOI: 10.1016/j.carbon.2014.10.056.
Zhang,6 Z. P., Zhang, J., Chen, N. & Qu, L. T. (2012). Tailored graphene systems for unconventional applications in energy conversion and storage devices. Energy and Environmental Science, 8(1), 31-54. DOI: 10.1039/c4ee02594f.