2021, Number 1
The isoprenoids as biofuel source
Language: Spanish
References: 40
Page:
PDF size: 306.72 Kb.
ABSTRACT
The fossil fuels have negative effects on the environment thus in last years the concern about the supplies of petroleum has increased, therefore the implementation of renewable energies is a necessity, these energies also have to be economic and environment-friendly. The biofuels, are environment-friendly energy that can be obtained from renewable sources as corn, lignocellulose, citrus peel, or from the lipids of microorganism as cyanobacteria, genetically modified bacteria Escherichia coli and yeast as Yarrowia lipolytica and Rhodosporidium toruloides. Both yeasts have the capacity to accumulate 70% of lipid in dry biomass, unlike Y. lipolytica, the R. toruloides accumulate carotenoids, a kind of terpenoid with many applications in pharmaceutics and food industries. Moreover, this yeast has the ability to metabolize a variety of sugars as glucose, xylose, mannose, and sucrose, while the yeasts Y. lipolytic and Saccharomyces cerevisiae are unable to metabolize the pentose xylose. The R. toruloides also can tolerate variations in temperature and pH reason why is one of the yeast more explored to achieve the production of biomolecules as lipids and terpenoids, from which is possible to obtain biofuels and biofuels additives. The biofuels obtained from yeast, due to its origin, are classified as biofuels of third generation, and energetic and structurally are similar to fossil fuels, therefore some isoprenoids are used in the aviation industry and can be used for diesel engines. In this review, we describe some properties of the isoprenoids as precursors of biofuels and additives.REFERENCES
Brennan, T. C., Turner, C. D., Kromer, J. O. & Nielsen, L. K. (2012). Alleviating monoterpene toxicity using a twophase extractive fermentation for the bioproduction of jet fuel mixtures in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 109(10), 2513–2522. https://doi. org/10.1002/bit.24536
Chen, X., Kuhn, E., Jennings, E. W., Nelson, R., Tao, L., Zhang, M. & Tucker, M. P. (2016). DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L−1) during enzymatic hydrolysis and high ethanol concentrations (> 10% v/v) during fermentation without hydrolysate purification or concentration. Energy & Environmental Science, 9(4), 1237–1245. https://doi. org/10.1039/C5EE03718B
de Paula, R. G., Antonieto, A. C. C., Ribeiro, L. F. C., Srivastava, N., O’Donovan, A., Mishra, P. K., Gupta, V. K. & Silva, R.N (2019). Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnology Advances, 37(6), 107347. https://doi. org/10.1016/j.biotechadv.2019.02.003
Dinh, H. V., Suthers, P. F., Chan, S. H. J., Shen, Y., Xiao, T., Deewan, A., Jagtap, S. S., Zhao, H., Ro, C. V., Rabinowitz, J. D. & Maranas, C. D. (2019). A comprehensive genomescale model for Rhodosporidium toruloides IFO0880 accounting for functional genomics and phenotypic data. Metabolic Engineering Communications, 9, e00101. https://doi.org/10.1016/j.mec.2019.e00101
Geiselman, G. M., Zhuang, X., Kirby, J., Tran-Gyamfi, M. B., Prahl, J. P., Sundstrom, E. R., Gao, Y., Munoz Munoz, N., Nicora, C. D., Clay, D.M., Papa, G., Burnum- Johnson, K. E., MAgnuson, J. K., Tanjore, D., Skerker, J. M. & Gladden, J. M (2020). Production of ent-kaurene from lignocellulosic hydrolysate in Rhodosporidium toruloides. Microbial Cell Factories, 19(1), 24. https:// doi.org/10.1186/s12934-020-1293-8
Imatoukene, N., Verbeke, J., Beopoulos, A., Idrissi Taghki, A., Thomasset, B., Sarde, C.-O., Nonus, M. & Nicaud, J.-M. (2017). A metabolic engineering strategy for producing conjugated linoleic acids using the oleaginous yeast Yarrowia lipolytica. Applied Microbiology and Biotechnology, 101(11), 4605–4616. https://doi. org/10.1007/s00253-017-8240-6
Pimienta, J. A. P., Papa, G., Rodriguez, A., Barcelos, C. A., Liang, L., Stavila, V., Sanchez, A., Gladden, J. M. & Simmons, B. A. (2019). Pilot-scale hydrothermal pretreatment and optimized saccharification enables bisabolene production from multiple feedstocks. Green Chemistry, 21(11), 3152–3164. The Royal Society of Chemistry. https://doi.org/10.1039/C9GC00323A
Rodriguez, A., Ersig, N., Geiselman, G. M., Seibel, K., Simmons, B. A., Magnuson, J. K., Eudes, A. & Gladden, J. M. (2019). Conversion of depolymerized sugars and aromatics from engineered feedstocks by two oleaginous red yeasts. Bioresource Technology, 286, 121365. https:// doi.org/10.1016/j.biortech.2019.121365
Salvachúa, D., Katahira, R., Cleveland, N. S., Khanna, P., Resch, M. G., Black, B. A., Purvine, S. O.,Zink, E. M., Prieto, A., Martínez, M. J., Martínez, Angel T., Simmons, B. A., Gladden, J. M. & Beckhmam, G. T. (2016). Lignin depolymerization by fungal secretomes and a microbial sink. Green Chemistry, 18, 6046–6062. https://doi. org/10.1039/C6GC021531J
Shaw, J. J., Berbasova, T., Sasaki, T., Jefferson-George, K., Spakowicz, D. J., Dunican, B. F., Portero, C. E., Narvaez- Trujillo, A. & Strobel, S. A. (2015). Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. With specificity determinants in common with the plant synthases. Journal of Biological Chemistry, 290(13), 8511–8526. https://doi.org/10.1074/jbc.M114.636159
Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. (2016). Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proceeding of the National Academic of Sciences of the United States of America, 113(39), 10848–10853. https:// doi.org/10.1073/pnas.1607295113
Yaegashi, J., Kirby, J., Ito, M., Sun, J., Dutta, T., Mirsiaghi, M., Sundstrom, E. R., Rodriguez, A., Baidoo, E., Tanjore, D., Pray, T., Sale, K., Singh, S., Keasling, J. D., Simmons, B. A Singer, S. W., Magnuson, J. K., Arkin, A. P., Skerker, J. M. & Gladden, J. M. (2017). Rhodosporidium toruloides: A new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts. Biotechnology for Biofuels, 10, 241. https://doi.org/10.1186/s13068-017- 0927-5
Zhao, J., Li, C., Zhang, Y., Shen, Y., Hou, J. & Bao, X. (2017). Dynamic control of ERG20 expression combined with minimized endogenous downstream metabolism contributes to the improvement of geraniol production in Saccharomyces cerevisiae. Microbial Cell Factories, 16(1), 17. https://doi.org/10.1186/s12934-017-0641-9
Zhao, X., Peng, F., Du, W., Liu, C. & Liu, D. (2012). Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid. Bioprocess Biosystems Engineering, 35(6), 993–1004. https://doi.org/10.1186/ s12934-017-0641-9
Zhuang, X., Kilian, O., Monroe, E., Ito, M., Tran-Gymfi, M. B., Liu, F., Davis, R. W., Mirsiaghi, M., Sundstrom, E., Pray, T., Skerker, J. M., George, A. & Gladden, J. M. (2019). Monoterpene production by the carotenogenic yeast Rhodosporidium toruloides. Microbial Cell Factories, 18(1), 54. https://doi.org/10.1186/s12934-019- 1099-8