2020, Number 5
<< Back Next >>
Revista Habanera de Ciencias Médicas 2020; 19 (5)
Telomere attrition in neurodegenerative disorders: therapeutic implications
Sánchez OG, Cuello AD, Almaguer MLE
Language: Spanish
References: 71
Page: 1-16
PDF size: 712.86 Kb.
ABSTRACT
Introduction:
Several neurodegenerative disorders are associated with telomere attrition, turning telomeres into potential biomarkers and potential therapeutic targets.
Objective:
To assess the relevance of telomere attrition for neurodegenerative disorders, highlighting its therapeutic implications.
Material and methods:
A literature review was carried out from September 2019 to January 2020. Several databases were searched by using descriptors and Boolean operators. Advanced search strategy was used for the selection of articles, taking into account the methodological quality and validity of the studies.
Results:
Strong evidence for an association between telomere attrition and Alzheimer and Huntington diseases was obtained, suggesting a potential importance of telomere biology in the physiopathology of these diseases. Current evidence does not allow establishing the relevance of telomere attrition in the physiopathology of Parkinson´s disease or Amyotrophic Lateral Sclerosis. Evidence was obtained for the usefulness of therapies for the prevention of telomere attrition in the treatment of neurodegenerative disorders.
Conclusions:
Telomere attrition has physiopathological and clinical relevance in Alzheimer´s and Huntington´s diseases, though current evidence is not enough to establish its role in Parkinson´s disease and Amyotrophic Lateral Sclerosis. Strategies that enhance telomerase activity have therapeutic potential in the context of neurodegenerative disorders.
REFERENCES
GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019; 18(5):459-80
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019; 15(10):565-81.
Turner KJ, Vasu V, Griffin DK. Telomere Biology and Human Phenotype. Cells. 2019; 8(1):73.
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci. 2020; 77(1):61-79.
De Lange T. Shelterin-Mediated Telomere Protection. Annu Rev Genet. 2018; 52:223-47.
Aviv A, Shay JW. Reflections on telomere dynamics and ageing-related diseases in humans. Philos Trans R Soc Lond B Biol Sci. 2018; 373(1741).
Venkatesan S, Khaw AK, Hande MP. Telomere Biology-Insights into an Intriguing Phenomenon. Cells. 2017; 6(2).
Coluzzi E, Leone S, Sgura A. Oxidative Stress Induces Telomere Dysfunction and Senescence by Replication Fork Arrest. Cells. 2019; 8(1): E19.
Shin D, Shin J, Lee KW. Effects of Inflammation and Depression on Telomere Length in Young Adults in the United States. J Clin Med. 2019; 8(5). pii: E711.
Jiang Y, Da W, Qiao S, Zhang Q, Li X, Ivey G, et al. Basal cortisol, cortisol reactivity, and telomere length: A systematic review and meta-analysis. Psychoneuroendocrinology. 2019; 103:163-72.
Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement (NY). 2018; 4:575-90.
Greco V, Longone P, Spalloni A, Pieroni L, Urbani A. Crosstalk Between Oxidative Stress and Mitochondrial Damage: Focus on Amyotrophic Lateral Sclerosis. Adv Exp Med Biol. 2019; 1158:71-82.
Fouquerel E, Barnes RP, Uttam S, Watkins SC, Bruchez MP, Opresko PL. Targeted and Persistent 8-Oxoguanine Base Damage at Telomeres Promotes Telomere Loss and Crisis. Molecular Cell. 2019; 75: 117-30.
Ly K, Walker C, Berry S, Snell R, Marks E, Thayer Z, et al. Telomere length in early childhood is associated with sex and ethnicity. Sci Rep. 2019; 9(1):10359.
Robinson M, Lee BY, Hane FT. Recent Progress in Alzheimer's Disease Research, Part 2: Genetics and Epidemiology. J Alzheimers Dis. 2017; 57(2):317-30.
Hane FT, Robinson M, Lee BY, Bai O, Leonenko Z, Albert MS. Recent Progress in Alzheimer's Disease Research, Part 3: Diagnosis and Treatment. J Alzheimers Dis. 2017; 57(3):645-65.
Chatani E, Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev. 2018; 10:527-34.
Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016; 11(10):1579-81.
Panossian LA, Porter VR, Valenzuela HF, Zhu X, Reback E, Masterman D, et al. Telomere shortening in T cells correlates with Alzheimer's disease status. Neurobiol Aging. 2003; 24:77-84.
Thomas P, O'Callaghan NJ, Fenech M. Telomere length in white blood cells, buccal cells and brain tissue and its variation with ageing and Alzheimer's disease. Mech Ageing Dev. 2008; 129:183-90.
Hochstrasser T, Marksteiner J, Humpel C. Telomere length is age-dependent and reduced in monocytes of Alzheimer patients. Exp Gerontol. 2012; 47:160-3.
Mathur S, Glogowska A, McAvoy E, Righolt C, Rutherford J, Willing C, et al. Three-dimensional quantitative imaging of telomeres in buccal cells identifis mild, moderate, and severe Alzheimer's disease patients. J Alzheimers Dis. 2014; 39:35-48.
Tedone E, Arosio B, Colombo F, Ferri E, Asselineau D, Piette F, et al. Leukocyte telomere length in Alzheimer's disease patients with a different rate of progression. J Alzheimers Dis. 2015; 46:761-9.
Scarabino D, Broggio E, Gambina G, Corbo RM. Leukocyte telomere length in mild cognitive impairment and Alzheimer's disease patients. Exp Gerontol. 2017; 98:143-7.
Ma F, Lv X, Du Y, Chen H, Liu S, Zhao J, et al. Association of Leukocyte Telomere Length with Mild Cognitive Impairment and Alzheimer's Disease: Role of Folate and Homocysteine. Dement Geriatr Cogn Disord. 2019; 48(1-2):56-67.
Boccardi V, Arosio B, Cari L, Bastiani P, Scamosci M, Casati M, et al. Beta- carotene, telomerase activity and Alzheimer's disease in old age subjects. Eur J Nutr. 2020; 59(1):119-26.
Lukens JN, Van Deerlin V, Clark CM, Xie SX, Johnson FB. Comparisons of telomere lengths in peripheral blood and cerebellum in Alzheimer's disease. Alzheimers Dement. 2009; 5:463-9.
Takata Y, Kikukawa M, Hanyu H, Koyama S, Shimizu S, Umahara T, et al. Association between ApoE phenotypes and telomere erosion in Alzheimer's disease. J Gerontol A Biol Sci Med Sci. 2012; 67:330-5.
Movérare Skrtic S, Johansson P, Mattsson N, Hansson O, Wallin A, Johansson JO, et al. Leukocyte telomere length (LTL) is reduced in stable mild cognitive impairment but low LTL is not associated with conversion to Alzheimer's disease: a pilot study. Exp Gerontol. 2012; 47:179-82.
Guan JZ, Guan WP, Maeda T, Makino N. Effect of vitamin E administration on the elevated oxygen stress and the telomeric and subtelomeric status in Alzheimer's disease. Gerontology. 2012; 58:62-9.
Liu M, Huo YR, Wang J, Wang C, Liu S, Liu S, et al. Telomere Shortening in Alzheimer's Disease Patients. Annals ofClinical& Laboratory Science. 2016; 46(3): 260-5.
Franco S, Blasco MA, Siedlak SL, Harris PL, Moreira PI, Perry G, et al. Telomeres and telomerase in Alzheimer's disease: epiphenomena or a new focus for therapeutic strategy? Alzheimers Dement. 2006; 2:164-8.
Forero DA, González Giraldo Y, López Quintero C, Castro Vega LJ, Barreto GE, Perry GE. Meta-analysis of Telomere Length in Alzheimer's Disease. J Gerontol A Biol Sci Med Sci. 2016; 71:1069-73.
Zhan Y, Song C, Karlsson R, Tillander A, Reynolds CA, Pedersen NL, et al. Telomere length shortening and Alzheimer disease-a Mendelian randomization study. JAMA Neurol. 2015; 72(10):1202-3.
Gao K, Wei C, Zhu J, Wang X, Chen G, Luo Y, et al. Exploring the Causal Pathway From Telomere Length to Alzheimer's Disease: An Update Mendelian Randomization Study. Front. Psychiatry. 2019; 10:843.
Guo Y, Yu H. Leukocyte Telomere Length Shortening and Alzheimer's Disease Etiology. J Alzheim Dis. 2019; 69: 881-5.
Scheller Madrid A, Rasmussen KL, Rode L, Frikke-Schmidt R, Nordestgaard BG, Bojesen SE. Observational and genetic studies of short telomeres and Alzheimer's disease in 67,000 and 152,000 individuals: a Mendelian randomization study. Eur J Epidem. 2020; 35 (2): 147-56.
GBD 2016 Parkinson's Disease Collaborators. Global, regional, and national burden of Parkinson's disease, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2018; 17: 939-53.
Titova N, Padmakumar C, Lewis SJG, Chaudhuri KR. Parkinson's: a syndrome rather than a disease? J Neural Transm. 2017; 124:907-14.
Rocha EM, De Miranda B, Sanders LH. Alphasynuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 2018; 109:249-57.
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017; 18(3).
Guan JZ, Maeda T, Sugano M, Oyama J, Higuchi Y, Suzuki T, et al. A percentage analysis of the telomere length in Parkinson's disease patients. J. Gerontol. A Biol. Sci. Med. Sci. 2008; 63:467-73.
Maeda T, Guan JZ, Koyanagi M, Higuchi Y, Makino N. Aging-associated alteration of telomere length and subtelomeric status in female patients with Parkinson's disease. J Neurogenet. 2012; 26: 245-51.
Schürks M, Buring J, Dushkes R, Gaziano JM, Zee RY, Kurth T. Telomere length and Parkinson's disease in men: a nested case-control study. Eur J Neurol. 2014; 21: 93-9.
Wang H, Chen H, Gao X, McGrath M, Deer D, De Vivo I, et al. Telomere length and risk of Parkinson's disease. Mov. Disord. 2008; 23: 302-5.
Eerola J, Kananen L, Manninen K, Hellstrom O, Tienari PJ, Hovatta I. No evidence for shorter leukocyte telomere length in Parkinson's disease patients. J Gerontol A Biol Sci Med Sci. 2010; 65:1181-4.
Watfa G, Dragonas C, Brosche T, Dittrich R, Sieber CC, Alecu C, et al. Study of telomere length and different markers of oxidative stress in patients with Parkinson's disease. J. Nutr Health Aging. 2011; 15: 277-81.
Degerman S, Domellof M, Landfors M, Linder J, Lundin M, Haraldsson S, et al. Long leukocyte telomere length at diagnosis is a risk factor for dementia progression in idiopathic parkinsonism. PLoS ONE. 2014; 9: e113387.
Kolyada AK, Vaiserman AM, Krasnenkov DS, Karaban IN. Studies of telomere length in patients with Parkinson's disease. Neuroscience and Behavioral Physiology. 2016; 46(3): 344-7.
Hudson G, Faini D, Stutt A, Eccles M, Robinson L, Burn DJ, et al. No evidence of substantia nigra telomere shortening in Parkinson's disease. Neurobiol Aging. 2011; 32(2107): e2103-5.
Forero DA, González Giraldo Y, López Quintero C, Castro Vega LJ, Barreto GE, Perry G. Telomere length in Parkinson's disease: A meta-analysis. Experimental Gerontology. 2016; 75: 53-5.
Oskarsson B, Gendron TF, Staff NP. Amyotrophic Lateral Sclerosis: An Update for 2018. Mayo Clin Proc. 2018; 93(11):1617-28.
Longinetti E, Fang F. Epidemiology of amyotrophic lateral sclerosis: an update of recent literature. Curr Opin Neurol. 2019; 32(5): 771-6.
De Felice B, Annunziata A, Fiorentino G, Manfellotto F, D'Alessandro R, Marino R, et al. Telomerase expression in amyotrophic lateral sclerosis (ALS) patients. J Hum Genet. 2014; 59:555-61.
Linkus B, Wiesner D, Meßner M, Karabatsiakis A, Scheffold A, Rudolph KL, et al. Telomere shortening leads to earlier age of onset in ALS mice. Aging 2016; 8(2): 382-91.
Iberl S, Meyerb AL, Müllera G, Peters S, Johannesen S, Kobor I, Beier F, et al. Effects of continuous high-dose G-CSF administration on hematopoietic stem cell mobilization and telomere length in patients with amyotrophic lateral sclerosis - a pilot study. Cytokine. 2019; 120: 192-201.
Al Khleifat A, Iacoangeli A, Shatunov A, Fang T, Sproviero W, Jones AR, et al. Telomere length is greater in ALS than in controls: a whole genome sequencing study. Amyotroph Lateral Scler Frontotemporal Degener. 2019; 20(3-4):229-34.
Rüb U, Seidel K, Heinsen H, Vonsattel JP, den Dunnen WF, Korf HW. Huntington's disease (HD): the neuropathology of a multisystem neurodegenerative disorder of the human brain. Brain Pathol. 2016; 26(6):726-40.
McColgan P, Tabrizi SJ. Huntington's disease: a clinical review. Eur J Neurol. 2018; 25(1):24-34.
Jiménez Sánchez M, Licitra F, Underwood BR, Rubinsztein DC. Huntington's Disease: Mechanisms of Pathogenesis and Therapeutic Strategies. Cold Spring Harb Perspect Med. 2017; 7(7): a024240.
Kay C, Hayden MR, Leavitt BR. Epidemiology of Huntington disease. Handb Clin Neurol. 2017; 144:31-46.
Kota LN, Bharath S, Purushottam M, Moily NS, Sivakumar PT, Varghese M, et al. Reduced telomere length in neurodegenerative disorders may suggest shared biology. J Neuropsychiatry Clin Neurosci. 2015; 27: e92-6.
Castaldo I, Rosa MD, Romano A, Zuchegna C, Squitieri F, Mechelli R, et al. DNA damage signatures in peripheral blood cells as biomarkers in prodromal huntington disease. Ann Neurol. 2019; 85:296-301.
Scarabino D, Veneziano L, Peconi M, Frontali M, Mantuano E, Corbo RM. Leukocyte telomere shortening in Huntington's disease. J Neurol Sci. 2019; 396:25-9.
Perez Grovas SA, Ochoa Morales A, Miranda Duarte A, Martínez Ruano L, Jara Prado A, Camacho Molina A, et al. Telomere length analysis on leukocytes derived from patients with Huntington Disease. Mech Ageing Dev. 2020; 185:111189.
Aziz NA, Weydt P. Telomere length as a modifier of age-at-onset in Huntington disease: a two-sample Mendelian randomization study. J Neurol. 2018; 265(9):2149-51.
Liu MY, Nemes A, Zhou QG. The Emerging Roles for Telomerase in the Central Nervous System. Front Mol Neurosci. 2018; 11:160.
Jager K, Walter M. Therapeutic targeting of telomerase. Genes (Basel) 2016; 7 (7): E39.
Bernardes de Jesús B, Vera E, Schneeberger K, Tejera AM, Ayuso E, Bosch F, et al. Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med. 2012; 4: 691-704.
Whittemore K, Derevyanko A, Martinez P, Serrano R, Pumarola M, Bosch F, et al. Telomerase gene therapy ameliorates the effects of neurodegeneration associated to short telomeres in mice. Aging. 2019; 11(10):2916-48.
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Advances in Clinical Chemistry. 2019; 90:81-132.