2021, Number 1-3
<< Back Next >>
Rev Mex Periodontol 2021; 12 (1-3)
Genes associated with the carious process
Orozco MKF, Fuentes LMG, Gutiérrez AM, Mariaud SRP
Language: Spanish
References: 67
Page: 18-29
PDF size: 334.30 Kb.
ABSTRACT
Dental caries represents a chronic problem with a high prevalence worldwide. It is considered a complex process compared to other diseases, because unlike other pathological processes, caries cannot be defined as the presence of a specific microorganism, different factors are involved, including genetics. The role that genetics plays as an etiological factor has been a relevant issue in recent years. Because within the oral cavity the main defense mechanisms against cariogenic microorganisms are present in saliva and crevicular fluid, many of the studies have sought to know the association between genetic variants of the immune response and dental caries. In addition to the genes related to the immune response, among the candidate genes that have also been studied are those involved in the amelogenesis process, since it has been recognized that variants in the structure of enamel lead to greater susceptibility to cavities. This article aims to present the results obtained in various studies, on genes and their participation in the development of cavities. To comply with this, a bibliographic search was carried out in the databases PubMed, Dialnet, Redalyc and Google Scholar, and dentistry books were also consulted.
REFERENCES
Kassebaum N, Bernabé E, Dahiya M, Bhandari B, Murray CJ, Marcenes W. Global burden of untreated caries: a systematic review and metaregression. J Dent Res. 2015; 94 (5): 650-658.
Thylstrup A, Fejerskov O. Different concepts of dental caries and their implications. Textbook of clinical cariology. 2nd ed. Royal Tunbridge Wells, UK: Blackwell Munksgaard; 1994. pp. 209-221.
Bretz W, Corby P, Hart T, Costa S, Coelho M, Weyant R et al. Dental caries and microbial acid production in twins. Caries Res. 2005; 39 (3): 168-172.
Almaguer A, Villagómez J. El papel de la saliva en el ecosistema oral. Composición de la saliva. En: Villagómez J, Soria A. Ecología oral. México: El Manual Moderno; 2017.
Gutiérrez J. Fundamentos de ciencias básicas aplicadas a la odontología. Bogotá, Colombia: Editorial Pontificia Universidad Javeriana; 2005.
Vieira A, Modesto A, Marazita M. Caries: review of human genetics research. Caries Res. 2014; 48: 491-506.
Federación Dental Internacional. El desafío de las enfermedades bucodentales – Una llamada a la acción global. Atlas de Salud Bucodental [Internet]. Suiza: FDI World Dental Federation; 2015. Disponible en: https://www.fdiworlddental.org/sites/default/files/media/documents/book_spreads_oh2_spanish.pdf
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet. 2018; 392: 1789-1858.
Mathur V, Dhillon J. Dental caries: a disease which needs attention. Indian J Pediatr. 2017; 85 (3): 202-206.
Opal S, Garg S, Jain J, Walia I. Genetic factors affecting dental caries risk. Aust Dent J. 2015; 60 (1): 2-11.
Piekoszewska-Zietek P, Turska-Szybka A, Olczak-Kowalczyk D. Single nucleotide polymorphism in the aetiology of caries: systematic literature review. Caries Res. 2017; 51 (4): 425-435.
Ring ME. Dentistry: an illustrated history. New York: Harry N. Abrams, Inc; 1985.
Kim J, Jang K, Lee S, Kim C, Hahn S, García-Godoy F. In vivo rehardening od enamel eroded by cola drink. J Dent Child. 2001; 68: 122-124.
Banerjee A, Frencken J, Schwendicke F, Innes N. Contemporary operative caries management: consensus recommendations on minimally invasive caries removal. Br Dent J. 2017; 223 (3): 215-222.
Rodríguez A, González O. Fisiopatología de la caries dental. Univ Odontol. 2000; 20 (Supl 1): 56-63.
Taubman M, Nash D. The scientific and public health imperative for a vaccine against dental caries. Nat Rev Immunol. 2006; 6 (7): 555-563.
Gómez S, Roa N, Rodríguez A. Inmunología de la caries dental. En: Gutiérrez S, editor. Fundamentos de ciencias básicas aplicadas a la odontología. Bogotá: Pontificia Universidad Javeriana; 2006. pp. 170-187.
Pitts N, Zero D. White paper on dental caries prevention and management. FDI World Dental Federation [Internet]. 2016 [Consultado 20 Mar 2021]; 1-59. Available in: http://www.fdiworlddental.org/sites/default/ files/media/documents/2016-fdi_cpp-white_paper.pdf
Vieira A, Marazita M, Goldstein-McHenry T. Genome-wide scan finds suggestive caries loci. J Dent Res. 2008; 87 (5): 435-439.
Fejerskov O, Kidd E, Nyvad B, Baelum V (eds). Dental caries. The disease and its clinical management. 2nd ed. Denmark: Wiley-Blackwell; 2008.
Worawongvasu R. A scanning electron microscopic study of enamel surfaces of incipient caries. Ultrastruct Pathol. 2015; 39 (6): 408-412.
Bowen W. Dental caries - not just holes in teeth! A perspective. Mol Oral Microbiol. 2015; 31 (3): 228-233.
Shimizu T, Ho B, Deeley K, Briseño-Ruiz J, Faraco I, Schupack B et al. Enamel formation genes influence enamel microhardness before and after cariogenic challenge. PLoS One. 2012; 7 (9): e450.
Saha R, Sood P, Sandhu M, Diwaker A, Upadhyaye S. Association of amelogenin with high caries experience in indian children. J Clin Pediatr Dent. 2015; 39 (5): 458-461.
Ouryouji K, Imamura Y, Fujigaki Y, Oomori Y, Yanagisawa S, Miyazawa H et al. Analysis of mutations in the amelogenin and the enamelin genes in severe caries in Japanese pediatric patients. Pediatr Dent J. 2008; 18 (2): 79-85.
Hu J, Chan H, Simmer S, Seymen F, Richardson A, Hu Y et al. Amelogenesis imperfecta in two families with defined AMELX deletions in ARHGAP6. PLoS One. 2012; 7 (12): e52052.
Gerreth K, Zaorska K, Zabel M, Borysewicz-Lewicka M, Nowicki M. Chosen single nucleotide polymorphisms (SNPs) of enamel formation genes and dental caries in a population of Polish children. Adv Clin Exp Med. 2017; 26 (6): 899-905.
Gerreth K, Zaorska K, Zabel M, Nowicki M, Borysewicz-Lewicka M. Significance of genetic variations in developmental enamel defects of primary dentition in Polish children. Clin Oral Investig. 2018; 22: 321-329.
Chaussain C, Bouazza N, Gasse B, Laffont AG, Opsahl Vital S et al. Dental caries and enamelin haplotype. J Dent Res. 2014; 93 (4): 360-365.
Abbasoglu Z, Tanboga I, Küchler E, Deeley K, Weber M, Kaspar C et al. Early childhood caries is associated with genetic variants in enamel formation and immune response genes. Caries Res. 2015; 49: 70-77.
Antunes L, Antunes L, Küchler E, Lopes L, Moura A, Bigonha R et al. Analysis of the association between polymorphisms in MMP2, MMP3, MMP9, MMP20, TIMP1, and TIMP2 genes with white spot lesions and early childhood caries. Int J Paediatr Dent. 2015; 26 (4): 310-319.
Filho A, Calixto M, Deeley K, Santos N, Rosenblatt A, Vieira A. MMP20 rs1784418 protects certain populations against caries. Caries Res. 2016; 51 (1): 46-51.
Wang X, Willing M, Marazita M, Wendell S, Warren J, Broffitt B et al. Genetic and environmental factors associated with dental caries in children: the Iowa fluoride study. Caries Res. 2012; 46 (3): 177-184.
Shuler C. Inherited risks for susceptibility to dental caries. J Dent Educ. 2001; 65 (10): 1038-1045.
Wallengren M, Hamberg K, Ericson D, Nordberg J. Low salivary IgA activity to cell-surface antigens of mutans streptococci related to HLA-DRB1104. Oral Microbiol Immunol. 2005; 20 (2): 73-81.
Grigalauskiene R, Slabsinskiene E, Vasiliauskiene I. Biological approach of dental caries management. Stomatologija. 2015; 17 (4): 107-112.
Leone C, Oppenheim F. Physical and chemical aspects of saliva as indicators of risk for dental caries in humans. J Dent Educ. 2001; 65 (10): 1054-1062.
Orsi N. The antimicrobial activity of lactoferrin: current status and perspectives. Biometals. 2004; 17 (3): 189-196.
Antunes J, Frazao P, Narvai P, Bispo C, Pegoretti T. Spatial analysis to identify differentials in dental needs by area-based measures. Community Dent Oral Epidemiol. 2002; 30 (2): 133-142.
Gao X, Jiang S, Koh D, Hsu C. Salivary biomarkers for dental caries. Periodontol 2000. 2015; 70 (1): 128-141.
Ozawa Y, Chiba J, Sakamoto S. HLA class II alleles and salivary numbers of mutans streptococci and lactobacilli among young adults in Japan. Oral Microbiol Immunol. 2001; 16 (6): 353-357.
Mariani P, Mazzilli M, Margutti G, Lionetti P, Triglione P, Petronzelli F et al. Coeliac disease, enamel defects and HLA typing. Acta Paediatr. 1994; 83 (12): 1272-1275.
Tighe M, Hall M, Barbado M, Cardi E, Welsh K, Ciclitira P. HLA class II alleles associated with celiac disease susceptibility in a southern European population. Tissue Antigens. 1992; 40 (2): 90-97.
Wang H, Nakamura K, Inoue T, Yanagihori H, Kawakami Y, Hashimoto S et al. Mannose-binding lectin polymorphisms in patients with Behcet's disease. J Dermatol Sci. 2004; 36 (2): 115-117.
Wang X, Shaffer J, Weyant R, Cuenco K, DeSensi R, Crout R et al. Genes and their effects on dental caries may differ between primary and permanent dentitions. Caries Res. 2010; 44 (3): 277-284.
Linhartova P, Kastovsky J, Bartosova M, Musilova K, Zackova L, Kukletova M et al. ACE Insertion/Deletion polymorphism associated with caries in permanent but not primary dentition in Czech Children. Caries Res. 2016; 50 (2): 89-96.
Olszowski T, Adler G, Janiszewska-Olszowska J, Safranow K, Chlubek D. DD genotype of ACE I/D polymorphism might confer protection against dental caries in polish children. Caries Res. 2015; 49 (4): 390-393.
Doetzer A, Brancher J, Pecharki G, Schlipf N, Werneck R, Mira MT et al. Lactotransferrin gene polymorphism associated with caries experience. Caries Res. 2015; 49 (4): 370-377.
Volckova M, Borilova P, Trefna T, Vlazny J, Musilova K, Kukletova M et al. Lack of association between lactotransferrin polymorphism and dental caries. Caries Res. 2014; 48 (1): 39-44.
Weinberg A, Krisanaprakornkit S, Dale B. Epithelial antimicrobial peptides: review and significance for oral applications. Crit Rev Oral Biol Med. 1998; 9 (4): 399-414.
Lips A, Antunes L, Antunes L, Abreu J, Barreiros D, Oliveira D et al. Genetic polymorphisms in DEFB1 and miRNA202 are involved in salivary human β-defensin 1 levels and caries experience in children. Caries Res. 2017; 51 (3): 209-215.
Kim J, Hu J, Lee J, Moon S, Kim Y, Jang K et al. Mutational hot spot in the DSPP gene causing dentinogenesis imperfecta type II. Human Genetics. 2005; 116 (3): 186-191.
Jodkowska E. Polish public caries prophylaxis programme for children and young people. Dent Med Probl. 2010; 47: 137-143.
Banderas-Tarabay J, Zacarías-D'Oleire I, Garduño-Estrada R, Aceves-Luna E, González-Begné M. Electrophoretic analysis of whole saliva and prevalence of dental caries. A study in Mexican Dental Students. Arch Med Res. 2002; 33 (5): 499-505.
Cavallari T, Salomao H, Moysés S, Moysés S, Werneck R. The impact of MUC5B gene on dental caries. Oral Dis. 2017; 24 (3): 372-376.
Culp DJ, Quivey RQ, Bowen WH, Fallon MA, Pearson SK, Faustoferri R. A mouse caries model and evaluation of aqp5-/- knockout mice. Caries Res. 2005; 39 (6): 448-454.
Yu P, Bixler D, Goodman P, Azen E, Karn R. Human parotid proline-rich proteins: correlation of genetic polymorphisms to dental caries. Genet Epidemiol. 1986; 3 (3): 147-152.
Anderson L, Mandel I. Salivary protein polymorphisms in caries-resistant adults. J Dent Res. 1982; 61 (10): 1167-1168.
Anderson L, Lamberts B, Bruton W. Salivary protein polymorphisms in caries-free and caries-active adults. J Dent Res. 1982; 61 (2): 393-396.
Olszowski T, Adler G, Janiszewska-Olszowska J, Safranow K, Kaczmarczyk M. MBL2, MASP2, AMELX, and ENAM gene polymorphisms and dental caries in polish children. Oral Dis. 2012; 18: 389-395.
Li ZQ, Hu XP, Zhou JY, Xie XD, Zhang JM. Genetic polymorphisms in the carbonic anhydrase VI gene and dental caries susceptibility. Genet Mol Res. 2015; 14 (2): 5986-5993.
Hu X, Li X, Zhou J, YuM Z, Zhang J, Guo M. Analysis of the association between polymorphisms in the vitamin D receptor (VDR) gene and dental caries in a Chinese population. Genet Mol Res. 2015; 14 (3): 11631-11638.
Alyousef YM, Borgio JF, AbdulAzeez S, Al-Masoud N, Al-Ali AA, Al-Shwaimi E et al. Association of MBL2 gene polymorphism with dental caries in Saudi children. Caries Res. 2017; 51 (1): 12-16.
Kulkarni G, Chng T, Eny K, Nielsen D, Wessman C, El-Sohemy A. Association of GLUT2 and TAS1R2 genotypes with risk for dental caries. Caries Res. 2013; 47 (3): 219-225.
Izakovicova HL, Borilova Linhartova P, Lucanova S, Kastovsky J, Musilova K, Bartosova M et al. GLUT2 and TAS1R2 polymorphisms and susceptibility to dental caries. Caries Res. 2015; 49 (4): 417-424.
Haznedaroglu E, Koldemir-Gündüz M, Bakir-Coskun N, Bozkus H, Cagatay P, Süsleyici-Duman B et al. Association of sweet taste receptor gene polymorphisms with dental caries experience in school children. Caries Res. 2015; 49 (3): 275-281.
Robino A, Bevilacqua L, Pirastu N, Situlin R, Di Lenarda R, Gasparini P et al. Polymorphisms in sweet taste genes (TAS1R2 and GLUT2), sweet liking, and dental caries prevalence in an adult Italian population. Genes Nutr. 2015; 10 (5): 485.