2020, Number 1-3
<< Back Next >>
Rev Mex Periodontol 2020; 11 (1-3)
The role of adammalysin-17 (ADAM17) in periodontitis
Gómez-Thomas D, Rodríguez-Montaño R, Zepeda-Nuño SJ, Ruíz-Gutiérrez AC, Guerrero-Velázquez C
Language: Spanish
References: 42
Page: 10-15
PDF size: 286.92 Kb.
ABSTRACT
Adamalyins (ADAM) are proteins with characteristics of proteases, which are regularly found in the membrane of various cell types. ADAMs have been described as having the ability to cleave various molecules such as receptors, cytokines, and growth factors in their portion of the ectodomain, making various molecules soluble that function as activators or inhibitors of different cellular processes. ADAM17 has been described to cleave the membrane, tumor growth factor α (TNF-α), the NF-κB receptor ligand (RANKL) and the interleukin-23 receptor (IL-23R) IL-23, converting them into soluble molecules, that act in an important way in bone destruction. In this sense, it has been described that TNF-α, RANKL and IL-23R are increased in various types of samples from patients with periodontitis. This review addresses the role that ADAM17 plays in periodontitis, taking into account that this molecule participates in the generation of TNF-α, RANKL and IL-23R, molecules involved in the destruction of supporting tissues in periodontitis.
REFERENCES
Hajishengallis G. Periodontitis: from microbial immune subversion to systemic inflammation. Nat Rev Immunol. 2015; 15 (1): 30-44. doi: 10.1038/nri3785.
Kinane DF, Stathopoulou PG, Papapanou PN. Periodontal diseases. Nat Rev Dis Primers. 2017; 22 (3): 17038. doi: 10.1038/nrdp.2017.38.
Wolsberg TG, Primakoff P, Myles DG, White JM. ADAM, a novel family of membrane proteins containing a disintegrin and metalloproteinase domain: multipotential functions in cell-cell and cell-matrix interactions. J Cell Biol. 1995; 131: 275-278.
Edwards DR, Handsley MM, Pennington CJ. The ADAM metalloproteinases. Mol Aspects Med. 2008; 29 (5): 258-289. doi: 10.1016/j.mam.2008.08.001.
Endres K, Fahrenholz F. Regulation of α-secretase ADAM10 expression and activity. Exp Brain Res. 2012; 217: 343-352.
Reiss K, Saftig P. The "a disintegrin and metalloprotease" (ADAM) family of sheddases: physiological and cellular functions. Semin Cell Dev Biol. 2009; 20: 126-137.
Hynes RO, Lively JC, McCarty JH, Taverna D, Francis SE, Hodivala-Dilke K et al. The diverse roles of integrins and their ligands in angiogenesis. Cold Spring Harb Symp Quant Biol. 2002; 67: 143-153.
Saftig P, Reiss K. The "a disintegrin and metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential? Eur J Cell Biol. 2011; 90 (6-7): 527-535. doi: 10.1016/j.ejcb.2010.11.005.
Smith KM, Gaultier A, Cousin H, Alfandari D, White JM, DeSimone DW. The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol. 2002; 159: 893-902.
Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E et al. ADAM meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell. 2005; 123: 291-304.
Seals DF, Courtneidge SA. The ADAM family of metalloproteases: multidomain proteins with multiple functions. Genes Dev. 2003; 17: 7-30.
Hartmann D, de Strooper B, Serneels L. Cloning of a disintegrin metaloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997; 385: 733-736.
Qi H, Rand MD, Wu X, Sestan N, Wang W, Rakic P et al. Processing of the notch ligand delta by the metalloprotease Kuzbanian. Science. 1999; 283: 91-94.
Rocks N, Paulissen G, El Hour M, Quesada F, Crahay C, Gueders M et al. Emerging roles of ADAM and ADAMTS metalloproteinases in cancer. Biochimie. 2008; 90: 369-379.
Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF et al. A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. Nature. 1997; 20385 (6618): 729-733. doi: 10.1038/385729a0.
Moss ML, Jin SL, Milla ME, Bickett DM, Burkhart W, Carter HL et al. Cloning of a disintegrin metalloproteinase that processes precursor tumour-necrosis factor-alpha. Nature. 1997; 385 (6618): 733-736. doi: 10.1038/385733a0.
Reddy P, Slack JL, Davis R, Cerretti DP, Kozlosky CJ, Blanton RA et al. Functional analysis of the domain structure of tumor necrosis factor-alpha converting enzyme. J Biol Chem. 2000; 275 (19): 14608-14614. doi: 10.1074/jbc.275.19.14608.
Müllberg J, Althoff K, Jostock T, Rose-John S. The importance of shedding of membrane proteins for cytokine biology. Eur Cytokine Netw. 2000; 11 (1): 27-38.
Zunke F, Rose-John S. The shedding protease ADAM17: physiology and pathophysiology. Biochim Biophys Acta Mol Cell Res. 2017; 1864 (11 Pt B): 2059-2070. doi: 10.1016/j.bbamcr.2017.07.001.
Lum L, Wong BR, Josien R, Becherer JD, Erdjument-Bromage H, Schlondorff J et al. Evidence for a role of a tumor necrosis factor-alpha (TNF-alpha)-converting enzyme-like protease in shedding of TRANCE, a TNF family member involved in osteoclastogenesis and dendritic cell survival. J Biol Chem. 1999; 274 (19): 13613-13618. doi: 10.1074/jbc.274.19.13613.
Nakashima T, Kobayashi Y, Yamasaki S, Kawakami A, Eguchi K, Sasaki H et al. Protein expression and functional difference of membrane-bound and soluble receptor activator of NF-kappa B ligand: modulation of the expression by osteotropic factors and cytokines. Biochem Biophys Res Commun. 2000; 275 (3): 768-775. doi: 10.1006/bbrc.2000.3379.
Teitelbaum SL. Bone resorption by osteoclasts. Science. 2000; 289 (5484): 1504-1508. doi: 10.1126/science.289.5484.1504.
Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol. 2011; 32 (8): 380-387. doi: 10.1016/j.it.2011.05.005.
Wong E, Cohen T, Romi E, Levin M, Peleg Y, Arad U et al. Harnessing the natural inhibitory domain to control TNFα Converting Enzyme (TACE) activity in vivo. Sci Rep. 2016; 6: 35598. doi: 10.1038/srep35598.
Düsterhoft S, Hobel K, Oldefest M, Lokau J, Waetzig GH, Chalaris A et al. A disintegrin and metalloprotease 17 dynamic interaction sequence, the sweet tooth for the human interleukin 6 receptor. J Biol Chem. 2014; 289 (23): 16336-16348. doi: 10.1074/jbc.M114.557322.
Düsterhoft S, Jung S, Hung CW, Tholey A, Sonnichsen FD, Grotzinger J et al. Membrane-proximal domain of a disintegrin and metalloprotease-17 represents the putative molecular switch of its shedding activity operated by protein-disulfide isomerase. J Am Chem Soc. 2013; 135 (15): 5776-5781. doi: 10.1021/ja400340u.
Sommer A, Kordowski F, Büch J, Maretzky T, Evers A, Andra J et al. Phosphatidylserine exposure is required for ADAM17 sheddase function. Nat Commun. 2016; 7: 11523. doi: 10.1038/ncomms11523.
Vernal R, Chaparro A, Graumann R, Puente J, Valenzuela MA, Gamonal J. Levels of cytokine receptor activator of nuclear factor kappa B ligand in gingival crevicular fluid in untreated chronic periodontitis patients. J Periodontol. 2004; 75 (12): 1586-1591. doi: 10.1902/jop.2004.75.12.1586.
Nishijima Y, Yamaguchi M, Kojima T, Aihara N, Nakajima R, Kasai K. Levels of RANKL and OPG in gingival crevicular fluid during orthodontic tooth movement and effect of compression force on releases from periodontal ligament cells in vitro. Orthod Craniofac Res. 2006; 9 (2): 63-70. doi: 10.1111/j.1601-6343.2006.00340.x.
Bostanci N, Ilgenli T, Emingil G, Afacan B, Han B, Toz H et al. Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: implications of their relative ratio. J Clin Periodontol. 2007; 34 (5): 370-376. doi: 10.1111/j.1600-051X.2007.01061.x.
Bostanci N, Ilgenli T, Emingil G, Afacan B, Han B, Toz H et al. Differential expression of receptor activator of nuclear factor-kappa B ligand and osteoprotegerin mRNA in periodontal diseases. J Periodontal Res. 2007; 42 (4): 287-293. doi: 10.1111/j.1600-0765.2006.00946.x.
Bostanci N, Emingil G, Afacan B, Han B, Ilgenli T, Atilla G et al. Tumor necrosis factor-alpha-converting enzyme (TACE) levels in periodontal diseases. J Dent Res. 2008; 87 (3): 273-277. doi: 10.1177/154405910808700311.
Lee JH, Choi YJ, Heo SH, Lee JM, Cho JY. Tumor necrosis factor-α converting enzyme (TACE) increases RANKL expression in osteoblasts and serves as a potential biomarker of periodontitis. BMB Rep. 2011; 44 (7): 473-477. doi: 10.5483/BMBRep.2011.44.7.473.
Kinoshita N, Awano S, Yoshida A, Soh I, Ansai T. Periodontal disease and gene-expression levels of metalloendopeptidases in human buccal mucosal epithelium. J Periodontal Res. 2013; 48 (5): 606-614. doi: 10.1111/jre.12045.
Floss DM, Moll JM, Scheller J. IL-12 and IL-23-close relatives with structural homologies but distinct immunological functions. Cells. 2020; 9 (10): 2184. doi: 10.3390/cells9102184.
Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity. 2008; 28 (4): 454-467. doi: 10.1016/j.immuni.2008.03.004.
Cosmi L, Maggi L, Santarlasci V, Liotta F, Annunziato F. T helper cells plasticity in inflammation. Cytometry A. 2014; 85 (1): 36-42. doi: 10.1002/cyto.a.22348.
Presky DH, Yang H, Minetti LJ, Chua AO, Nabavi N, Wu CY et al. A functional interleukin 12 receptor complex is composed of two beta-type cytokine receptor subunits. Proc Natl Acad Sci U S A. 1996; 93 (24): 14002-14007. doi: 10.1073/pnas.93.24.14002.
Parham C, Chirica M, Timans J, Vaisberg E, Travis M, Cheung J et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol. 2002; 168 (11): 5699-5708. doi: 10.4049/jimmunol.168.11.5699.
Franke M, Schroder J, Monhasery N, Ackfeld T, Hummel TM, Rabe B et al. Human and murine interleukin 23 receptors are novel substrates for a disintegrin and metalloproteases ADAM10 and ADAM17. J Biol Chem. 2016; 91 (20): 10551-10561. doi: 10.1074/jbc.M115.710541.
Rivadeneyra-Burgos C, Rodríguez-Montaño R, Ruíz-Gutiérrez AC, Martínez-Rodríguez VC, Meléndez-Ruiz JL, Pita-López ML et al. Determination of levels of IL-23 soluble receptor in serum and plasma of patients with chronic and aggressive periodontitis. Rev Mex Periodontol. 2017; 8 (1): 5-10.
Guardiola CJA, Clemente-Napimoga JT, Martinez EF, Abdalla HB, Peruzzo DC, Joly JC et al. DC-STAMP and TACE levels are higher in patients with periodontitis. Braz Dent J. 2020; 31 (2): 122-126. doi: 10.1590/0103-6440202002939.