2020, Number 3
In vitro bactericidal activity of Chenopodium quinoa Willd. and Artemisia dracunculus L. against pathogenic bacteria
Language: Spanish
References: 39
Page:
PDF size: 189.74 Kb.
ABSTRACT
Introduction: Indiscriminate use of antibiotics for the treatment of bacterial infections has led to the emergence of resistant bacterial strains, which has motivated the search for alternatives for their control, such as the use of plant extracts that have shown potential as bactericides, e.g. Chenopodium quinoa Willd. and Artemisia dracunculus L, which are commercially cultivated in Colombia and neighboring countries.Objectives: To define the antibacterial activity of extracts from C. quinoa (quinoa) seeds and A. dracunculus (Russian tarragon) leaves.
Methods: Extraction from C. quinoa seeds and A. dracunculus leaves was carried out by maceration at room temperature. The solvents used were methanol, hexane, and ethyl acetate. The three extracts obtained were tested against Staphylococcus aureus ATCC® 6538™ and Escherichia coli ATCC® 25922™ by well diffusion, minimum inhibitory concentration and minimum bactericidal concentration methods.
Results: The methanolic extract of A. dracunculus at a concentration of 0.02 g/ml, generated average inhibition haloes of 30.67 mm for E. coli and 32 mm for S. aureus. At the same concentration, the methanolic extract of C. quinoa generated average inhibition haloes of 28.33 mm for S. aureus and 30 mm for E. coli. The strains of both bacteria showed high sensitivity (0.01 g / ml) to the A. dracunculus extract. For the C. quinoa extract, the strains of S. aureus (0.05 g / ml) and E. coli (0.1 g / ml) showed low sensitivity.
Conclusions: The minimum inhibitory concentration and the minimum bactericidal concentration methods of the methanolic extracts of both plants were the same, which classifies their activity as bactericidal against the strains of the microorganisms evaluated. The extract of A. dracunculus shows greater potential since the microorganisms displayed high sensitivity to it.
REFERENCES
Pereira E, Encina-Zelada C, Barros L, Gonzales-Barron U, Cadavez V, Ferreira I. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chem. 2019[acceso:26/02/2019];280:110–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814618321721
Pellegrini M, Lucas-Gonzales R, Ricci A, Fontecha J, Fernández-López J, PérezÁlvarez JA, et al. Chemical, fatty acid, polyphenolic profile, techno-functional and antioxidant properties of flours obtained from quinoa (Chenopodium quinoa Willd) seeds. Ind Crops Prod. 2018[acceso:26/02/2019];111:38–46. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669017306829
Díaz-Valencia YK, Alca JJ, Calori-Domínguez MA, Zanabria-Galvez SJ, Cruz SH. Nutritional composition, total phenolic compounds and antioxidant activity of quinoa (Chenopodium quinoa Willd.) of different colours. Nov Biotechnol Chim. 2018[acceso:26/02/2019];17(1):74–85. Disponible en: http://content.sciendo.com/view/journals/nbec/17/1/article-p74.xml
Hu Y, Zhang J, Zou L, Fu C, Li P, Zhao G. Chemical characterization, antioxidant, immune-regulating and anticancer activities of a novel bioactive polysaccharide from Chenopodium quinoa seeds. Int J Biol Macromol. 2017[acceso:29/07/2019];99:622–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0141813016322954
Miranda M, Delatorre-Herrera J, Vega-Gálvez A, Jorquera E, Quispe-Fuentes I, Martínez EA. Antimicrobial Potential and Phytochemical Content of Six Diverse Sources of Quinoa Seeds (Chenopodium quinoa Willd.). Agric Sci. 2014[acceso:29/07/2019];05(11):1015–24. Disponible en: http://www.scirp.org/journal/doi.aspx?DOI=10.4236/as.2014.511110
Dong S, Yang X, Zhao L, Zhang F, Hou Z, Xue P. Antibacterial activity and mechanism of action saponins from Chenopodium quinoa Willd. husks against foodborne pathogenic bacteria. Ind Crops Prod. 2020[acceso:08/07/2020];149:112350. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669020302661
Sun X, Yang X, Xue P, Zhang Z, Ren G. Improved antibacterial effects of alkalitransformed saponin from quinoa husks against halitosis-related bacteria. BMC Complement Altern Med. 2019[acceso:08/07/2020];19(1):46. Disponible en: https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-019- 2455-2
Vega-Gálvez A, Zura L, Lutz M, Jagus R, Victoria Agüero M, Pastén A, et al. Assessment of dietary fiber, isoflavones and phenolic compounds with antioxidant and antimicrobial properties of quinoa (Chenopodium quinoa Willd.). Chil J Agric Anim Sci. 2018[acceso:26/06/2019];34(1):57–67. Disponible en: https://scielo.conicyt.cl/pdf/chjaasc/v34n1/0719-3890-chjaasc-00101.pdf
Monsalve JMR, Rodríguez MC, Llanos CAH. Optimization of the process of freezedrying and comparison with convective driying of Russian tarragon (Artemisia Dracunculus L.). Acta Agronómica. 2019[acceso:26/08/2019];68(3). Disponible en: https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/75296
Méndez-del Villar M, Puebla-Pérez AM, Sánchez-Peña MJ, González-Ortiz LJ, Martínez-Abundis E, González-Ortiz M. Effect of Artemisia dracunculus Administration on Glycemic Control, Insulin Sensitivity, and Insulin Secretion in Patients with Impaired Glucose Tolerance. J Med Food. 2016[acceso:29/07/2019];19(5):481–5. Disponible en: http://www.liebertpub.com/doi/10.1089/jmf.2016.0005
Behbahani BA, Shahidi F, Yazdi FT, Mortazavi SA, Mohebbi M. Antioxidant activity and antimicrobial effect of tarragon (Artemisia dracunculus) extract and chemical composition of its essential oil. J Food Meas Charact. 2017[acceso:28/06/2019];11(2):847–63. Disponible en: http://link.springer.com/10.1007/s11694-016-9456-3
Liu T, Lin P, Bao T, Ding Y, Lha Q, Nan P, et al. Essential oil composition and antimicrobial activity of Artemisia dracunculus L. var. qinghaiensis Y. R. Ling (Asteraceae) from Qinghai-Tibet Plateau. Ind Crops Prod. 2018[acceso:28/06/2019];125:1–4. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669018307842
López Pino BE, Arroyave Sosa CP, Londoño Pérez DM, López Naranjo DF, Cardona Aristizábal ML, Hincapié Llanos CA. Actividad antimicrobiana in vitro de los extractos de Tithonia diversifolia (Hemsl) A. Gray (botón de oro) y Ageratum conyzoides L. (marrubio). Rev Cuba Plantas Med. 2018[acceso:08/10/2019];23(3). Disponible en: http://www.revplantasmedicinales.sld.cu/index.php/pla/article/view/57
Amensour M, Bouhdid S, Fernández-López J, Idaomar M, Senhaji NS, Abrini J. Antibacterial Activity of Extracts of Myrtus communis Against Food-Borne Pathogenic and Spoilage Bacteria. Int J Food Prop. 2010[acceso:29/07/2019];13(6):1215–24. Disponible en: https://www.tandfonline.com/doi/full/10.1080/10942910903013399
Raeisi M, Tajik H, Razavi RS, Maham M, Moradi M, Hajimohammadi B, et al. Essential oil of tarragon (Artemisia dracunculus) antibacterial activity on Staphylococcus aureus and Escherichia coli in culture media and Iranian white cheese. Iran J Microbiol. 2012[acceso:13/07/2018];4(1):30–4. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22783458
Bernal Sepúlveda R, Rodríguez Haro I, Salazar Castillo M. Efecto del extracto hidroalcohólico de Punica granatum sobre la viabilidad de Staphylococcus aureus y Pseudomonas aeruginosa in vitro. REBIOLEST. 2014[acceso:26/06/2019];2(1). Disponible en: https://revistas.unitru.edu.pe/index.php/ECCBB/article/view/639
Rodríguez S. Eficacia antibacteriana del extracto de Chenopodium quínoa Willd “Quinua” sobre la cepa de Escherichia coli, estudio in vitro. Universidad César Vallejo. 2016[acceso:26/06/2019]. Disponible en: http://repositorio.ucv.edu.pe/bitstream/handle/UCV/589/rodriguez_ms.pdf?sequenc e=1&isAllowed=y
Toribio MS, Oriani S, Toso RE, Tortone C, Fernández J. Staphylococcus aureus sensible a extractos metanólicos obtenidos de plantas nativas de la provincia de la Pampa, Argentina. Cienc Vet. 2009[acceso:06/03/2019];11(1):14–8. Disponible en: https://cerac.unlpam.edu.ar/index.php/veterinaria/article/view/1877
Sharafati Chaleshtori R, Rokni N, Razavilar V, Rafieian Kopaei M. The Evaluation of the Antibacterial and Antioxidant Activity of Tarragon (Artemisia dracunculus L.) Essential Oil and Its Chemical Composition. Jundishapur J Microbiol. 2013[acceso:26/06/2019];6(9):2–5. Disponible en: https://sites.kowsarpub.com/jjm/articles/18591.html
Ait Sidi Brahim M, Fadli M, Hassani L, Boulay B, Markouk M, Bekkouche K, et al. Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind Crops Prod. 2015[acceso:26/06/2019];71:37–43. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0926669015002575
Hossain MA, Al-Abri THA, Al-Musalami AHS, Akhtar MS, Said S. Evaluation of different extraction methods on antimicrobial potency of Adenium obesum stem against food borne pathogenic bacterial strains in Oman. Asian Pacific J Trop Dis. 2014[acceso:12/06/2019];4(S2):S985–9. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S2222180814607702
Repo-Carrasco-Valencia R, Hellström JK, Pihlava J-M, Mattila PH. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus). Food Chem. 2010[acceso:20/05/2019];120(1):128–33. Disponible en: https://linkinghub.elsevier.com/retrieve/pii/S0308814609011662
Obolskiy D, Pischel I, Feistel B, Glotov N, Heinrich M. Artemisia dracunculus L. (tarragon): A critical review of its traditional use, chemical composition, pharmacology, and safety. J Agric Food Chem. 2011[acceso:29/07/2019];59(21):11367–84. Disponible en: https://pubs.acs.org/doi/10.1021/jf202277w
Kalogeropoulos N, Konteles SJ, Troullidou E, Mourtzinos I, Karathanos VT. Chemical composition, antioxidant activity and antimicrobial properties of propolis extracts from Greece and Cyprus. Food Chem. 2009[acceso:26/06/2019];116(2):452– 61. Disponible en https://www.sciencedirect.com/science/article/abs/pii/S0308814609002490