2019, Number 2
Next >>
Rev Cubana Plant Med 2019; 24 (2)
Evaluation of the insecticidal and larvicidal activity of essential oil from Tarenaya spinosa (Jacq.) Raf. (mussambe) (Cleomaceae)
Almeida BJW, Rodrigues FC, Rodrigues CA, Amorim LSM, Pereira MJ, Alves CML, Silva RA
Language: Portugués
References: 23
Page: 1-14
PDF size: 350.79 Kb.
ABSTRACT
Introduction: Tarenaya spinosa (Jacq.) Raf. (Cleomaceae), mussambe, stands out for its strong smell, which is produced by its essential oil. Oils originating from secondary metabolism display biological activities such as insecticidal, antifungal, larvicidal, and others.
Objective: Evaluate the insecticidal and larvicidal activity of oil from T. spinosa leaves against Drosophila melanogaster and Artemia salina.
Method: For insecticidal testing, adult flies were exposed to various oil concentrations (3-30.5 μg/ml). Besides the mortality rate of D. melanogaster, its genotoxic behavior was also evaluated. For larvicidal testing, use was made of the microcrustacean A. salina, which was exposed to oil concentrations ranging from 5 to 1 000 μg/ml for 24 hours accompanied by a positive control (potassium dichromate).
Results: T. spinosa oil displayed insecticidal activity: 6.12 μg/ml caused 50% mortality (CL50) in 24 hours' exposure. Regarding genotoxic behavior, the oil significantly damaged the flight of flies at all the concentrations tested. With respect to larvicidal activity, CL50 was 181.1 μg/ml, showing that the oil has high toxicity.
Conclusions: T. spinosa essential oil has insecticidal potential and may be used to control Diptera. Additionally, the natural product studied was found to exhibit toxicity.
REFERENCES
Hall JC. Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data. Botany, 2008;86(7):682-96.
Forzza RC, Leitman PM, Costa A, Carvalho Jr AAD, Peixoto AL, Walter BMT, et al. Catálogo de plantas e fungos do Brasil-Vol. 1.
Maia-Silva C, Silva CI, Hrncir M. Queiroz RT, Imperatriz-Fonseca VL. Guia de plantas visitadas por abelhas na Caatinga. Fundação Brasil Cidadão: Fortaleza; 2012.
Silva APSA, Silva LCN, Fonseca CSM, Araújo JM, Santos-Correia MT, Silva Cavalcanti M, et al. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc. Front Microbiol, 2016;7(6):1-10.
Bezerra JWA, Costa AR, Silva MAP, Rocha MI, Boligon AA, Rocha JBT, et al. (2017). Chemical composition and toxicological evaluation of Hyptis suaveolens (L.) Poiteau (LAMIACEAE) in Drosophila melanogaster and Artemia salina. S Afr J Bot 2017;113(11):437-42.
Isman MB. Botanical insecticides, deterrents and repellents in modern agriculture and an increasingly regulated world. Annu Rev Entomol 2006;51(1):45-66.
Cunha FAB, Wallau GL, Pinho AI, Nunes MEM, Leite NF, Tintino SR, et al. Eugenia uniflora leaves essential oil induces toxicity in Drosophila melanogaster: involvement of oxidative stress mechanisms.Toxicol Res (Camb) 2015;4(3):634-44.
Jimenez DRM, Guzman MC, Velez PC. 2010. The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat. Neurochem Res 2010;35(2):227-38.
Gouveia W, Jorge TF, Martins S, Meireles M, Carolino M, Cruz C, et al. Toxicity of ionic liquids prepared from biomaterials. Chemosphere 2014;104(6):51-6.
Matos FJA. Introdução à Fitoquímica Experimental. UFC, Fortaleza; 2009.
Bezerra JWA, Rodrigues FC, Costa AR, Boligon AA, Rocha JBT, Barros LM. Estudo químico-biológico do óleo essencial de Lantana montevidensis (chumbinho) (Spreng.) Briq. (Verbenaceae) contra Drosophila melanogaster. Rev Cubana Plant Med 2016;22(1):s/p.
Costa AR, Silva JL, Lima KRR, Rocha MI, Barros LM, Costa JGM, et al. Rhaphiodon echinus (Nees & Mart.) Schauer: Chemical, toxicological activity and increased antibiotic activity of antifungal drug activity and antibacterial. Microb Pathog 2017;107(6):280-6.
Bezerra JWA, Santos MAF, Meiado MV, Linhares KV, Boligon AA, Leandro CS, et al. Allelopathy of aromatic species on the germination of Cereus jamacaru DC. subsp. jamacaru (Cactaceae). J Agr Science 2018;10(11):s/p.
McNeil MJ, Porter RB, Williams LA, Rainford L. Chemical composition and antimicrobial activity of the essential oils from Cleome spinosa. Nat Prod Commun 2010;5(8):1301-6.
Islam MT, Streck L, Alencar MVOB, Silva SWC, Conceição Machado K, Conceição Machado K, et al. Evaluation of toxic, cytotoxic and genotoxic effects of phytol and its nanoemulsion. Chemosphere 2017;177(6):93-101.
McNeil MJ, Porter RB, Williams LA. Chemical composition and biological activity of the essential oil from Jamaican Cleome serrata. Nat Prod Commun 2012;7(9):1231-2.
Pinho AI, Wallau GL, Nunes MEM, Leite NF, Tintino SR, Cruz LC, et al. Fumigant activity of the Psidium guajava var. pomifera (Myrtaceae) essential oil in Drosophila melanogaster by means of oxidative stress. Oxid Med Cell Longev. 2014;2014 (s/n):1-8.
Desneux N, Decourtye A, Delpuech JM. The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 2007;52(1):81-106.
Miguel MG, Duarte F, Venâncio F, Tavares R. 2005. Variation in the main components of the essential oils isolated from Thymbra capitata L. (Cav.) and Origanum vulgare L. J. J Agric Food Chem. 2005;53 (s/n):8162-8.
Luna JS. A study of the larvicidal and molluscicidal activities of some medicinal plants from northeast Brazil. J Ethnopharmacol. 2005;97(s/n):199-206.
Andrade FD, Ribeiro ARC, Medeiros MC, Fonseca SS, Athayde ACR, Ferreira AF, et al. Anthelmintic action of the hydroalcoholic extract of the root of Tarenaya spinosa (Jacq.) Raf. for Haemonchus contortus control in sheep. Pesqui Agropecu Bras. 2014;34(10):942-6.
Bakkali B, Averbeck C, Verbeck D, Idaomar M. Biological effects of essential oils – A review. Food Chem Toxicol. 2008;46(2):446-75.
Ultee A, Bennik MH, Moezelaar R. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. J Appl Environ Microbiol. 2002,68(4):1561-8.