2021, Number 3
<< Back Next >>
Neumol Cir Torax 2021; 80 (3)
Ten years of research on extracellular vesicles derived from mesenchymal cells for the treatment of lung diseases
Rescala G, Ramos-de CR, Robles M
Language: Spanish
References: 93
Page: 179-187
PDF size: 279.50 Kb.
ABSTRACT
Pulmonary diseases possess high rates of morbidity and mortality throughout the world and without effective treatment for these diseases, new options emerge. In the last decade, attention has focused on extracellular vesicles derived from stromal mesenchymal cells (VECM) due to their immunomodulatory, regenerative, antimicrobial, antiviral and antifibrotic properties that surpass the properties of mesenchymal stromal cells themselves. Consequently, we present this review with the purpose of gathering the knowledge generated in the 10 years of research on the therapeutic application of VECM in pulmonary pathologies, including the coronavirus disease 2019 (COVID-19) that has plagued the world in the past months. The information presented in this article demonstrates that although further research is required to fully elucidate their mechanisms of action and efficacy, VECM represent a promising therapy option for the treatment of a wide variety of lung diseases.
REFERENCES
Kassebaum NJ, Arora M, Barber RM, Bhutta ZA, Brown J, Carter A, et al.; GBD 2015 DALYs and HALE Collaborators. Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388(10053): 1603-1658. Available in: https://doi.org/10.1016/s0140-6736(16)31460-x
Máca J, Jor O, Holub M, Sklienka P, Bursa F, Burda M, et al. Past and present ARDS mortality rates: a systematic review. Respir Care. 2017; 62(1): 113-122. Available in: https://doi.org/10.4187/respcare.04716
Hoeper MM, Kramer T, Pan Z, Eichstaedt CA, Spiesshoefer J, Benjamin N, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J. 2017; 50(2): 1700740. Available in: https://doi.org/10.1183/13993003.00740-2017
Zysman-Colman Z, Tremblay GM, Bandeali S, Landry JS. Bronchopulmonary dysplasia - trends over three decades. Paediatr Child Health. 2013; 18(2): 86-90. Available in: https://doi.org/10.1093/pch/18.2.86
Ryerson CJ, Kolb M. The increasing mortality of idiopathic pulmonary fibrosis: fact or fallacy? Eur Respir J. 2018; 51(1): 1702420. Available in: https://doi.org/10.1183/13993003.02420-2017
World Health Organization. WHO coronavirus desease (COVID-19) dashboard. Available in: https://covid19.who.int/ Published 2020.
Wang H, Naghavi M, Allen C, Barber RM, Bhutta ZA, Carter A, et al.; GBD 2015 Mortality and Cause of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388(10053): 1459-1544. Available in: https://doi.org/10.1016/s0140-6736(16)31012-1
Ji H-L, Liu C, Zhao R-Z. Stem cell therapy for COVID-19 and other respiratory diseases: Global trends of clinical trials. World J Stem Cells. 2020; 12(6): 471–480. Available in: https://doi.org/10.4252/wjsc.v12.i6.471
Horie S, Laffey JG. Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome. F1000Research. 2016; 5: F1000 Faculty Rev-1532. Available in: https://doi.org/10.12688/f1000research.8217.1
Monsel A, Zhu Y-G, Gudapati V, Lim H, Lee JW. Mesenchymal stem cell derived secretome and extracellular vesicles for acute lung injury and other inflammatory lung diseases. Expert Opin Biol Ther. 2016; 16(7): 859-871. Available in: https://doi.org/10.1517/14712598.2016.1170804
Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy. 2005; 7(5): 393-395. Available in: https://doi.org/10.1080/14653240500319234
da Silva Meirelles L, Fontes AM, Covas DT, Caplan AI. Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine Growth Factor Rev. 2009; 20(5-6): 419-427. Available in: https://doi.org/10.1016/j.cytogfr.2009.10.002
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 2016; 8(3): 73-87. Available in: https://doi.org/10.4252/wjsc.v8.i3.73
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells. 2019; 8(8): 886. Available in: https://dx.doi.org/10.3390%2Fcells8080886
Kotani T, Masutani R, Suzuka T, Oda K, Makino S, Ii M. Anti-inflammatory and anti-fibrotic effects of intravenous adipose-derived stem cell transplantation in a mouse model of bleomycin-induced interstitial pneumonia. Sci Rep. 2017; 7(1): 14608. Available in: https://doi.org/10.1038/s41598-017-15022-3
Zanoni M, Cortesi M, Zamagni A, Tesei A. The role of mesenchymal stem cells in radiation-induced lung fibrosis. Int J Mol Sci. 2019; 20(16): 3876. Available in: https://doi.org/10.3390/ijms20163876
Yagi H, Chen AF, Hirsch D, Rothenberg AC, Tan J, Alexander PG, et al. Antimicrobial activity of mesenchymal stem cells against Staphylococcus aureus. Stem Cell Res Ther. 2020; 11(1): 293. Available in: https://doi.org/10.1186/s13287-020-01807-3
Alcayaga-Miranda F, Cuenca J, Khoury M. Antimicrobial activity of mesenchymal stem cells: Current status and new perspectives of antimicrobial peptide-based therapies. Front Immunol. 2017; 8: 339. Available in: https://doi.org/10.3389/fimmu.2017.00339
Krasnodembskaya A, Song Y, Fang X, Gupta N, Serikov V, Lee J-W, et al. Antibacterial effect of human mesenchymal stem cells is mediated in part from secretion of the antimicrobial peptide LL-37. Stem Cells. 2010; 28(12): 2229-2238. Available in: https://doi.org/10.1002/stem.544
Weiss ARR, Dahlke MH. Immunomodulation by mesenchymal stem cells (MSCs): mechanisms of action of living, apoptotic, and dead MSCs. Front Immunol. 2019; 10: 1191. Available in: https://doi.org/10.3389/fimmu.2019.01191
Stavely R, Nurgali K. The emerging antioxidant paradigm of mesenchymal stem cell therapy. Stem Cells Transl Med. 2020; 9(9): 985-1006. Available in: https://doi.org/10.1002/sctm.19-0446
Borger V, Bremer M, Ferrer-Tur R, Gockeln L, Stambouli O, Becic A, et al. Mesenchymal stem/stromal cell-derived extracellular vesicles and their potential as novel immunomodulatory therapeutic agents. Int J Mol Sci. 2017; 18(7): 1450. Available in: https://doi.org/10.3390/ijms18071450
Chen Y, Shao JZ, Xiang LX, Dong XJ, Zhang GR. Mesenchymal stem cells: A promising candidate in regenerative medicine. Int J Biochem Cell Biol. 2008; 40(5): 815-820. Available in: https://doi.org/10.1016/j.biocel.2008.01.007
Kaplan JM, Youd ME, Lodie TA. Immunomodulatory activity of mesenchymal stem cells. Curr Stem Cell Res Ther. 2011; 6(4): 297-316. Available in: https://doi.org/10.2174/157488811797904353
Le Blanc K, Mougiakakos D. Multipotent mesenchymal stromal cells and the innate immune system. Nat Rev Immunol. 2012; 12(5): 383-396. Available in: https://doi.org/10.1038/nri3209
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther. 2015; 23(5): 812-823. https://doi.org/10.1038/mt.2015.44
Witwer KW, Buzás EI, Bemis LT, Bora A, Lasser C, Lotvall J, et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2013; 2. https://doi.org/10.3402/jev.v2i0.20360
Lotvall J, Hill AF, Hochberg F, Buzás EI, Di Vizio D, Gardiner C, et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles. J Extracell Vesicles. 2014; 3: 26913. https://doi.org/10.3402/jev.v3.26913
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018; 7(1): 1535750. Available in: https://doi.org/10.1080/20013078.2018.1535750
Xu S, Liu C, Ji H-L. Concise review: Therapeutic potential of the mesenchymal stem cell derived secretome and extracellular vesicles for radiation-induced lung injury: progress and hypotheses. Stem Cells Transl Med. 2019; 8(4): 344-354. https://doi.org/10.1002/sctm.18-0038
Tsuchiya A, Takeuchi S, Iwasawa T, Kumagai M, Sato T, Motegi A, et al. Therapeutic potential of mesenchymal stem cells and their exosomes in severe novel coronavirus disease 2019 (COVID-19) cases. Inflamm Regen. 2020; 40: 14. Available in: https://doi.org/10.1186/s41232-020-00121-y
Simons M, Raposo G. Exosomes - vesicular carriers for intercellular communication. Curr Opin Cell Biol. 2009; 21(4): 575-581. Available in: https://doi.org/10.1016/j.ceb.2009.03.007
Lee C, Mitsialis SA, Aslam M, Vitali SH, Vergadi E, Konstantinou G, et al. Exosomes mediate the cytoprotective action of mesenchymal stromal cells on hypoxia-induced pulmonary hypertension. Circulation. 2012; 126(22): 2601-2611. Available in: https://doi.org/10.1161/circulationaha.112.114173
Hutcheson JD, Aikawa E. Extracellular vesicles in cardiovascular homeostasis and disease. Curr Opin Cardiol. 2018; 33(3): 290-297. Available in: https://doi.org/10.1097/hco.0000000000000510
Buzás EI, Tóth EÁ, Sódar BW, Szabó-Taylor KÉ. Molecular interactions at the surface of extracellular vesicles. Semin Immunopathol. 2018; 40(5): 453-464. Available in: https://doi.org/10.1007/s00281-018-0682-0
Morrison TJ, Jackson MV, Cunningham EK, Kissenpfennig A, McAuley DF, O'Kane CM, et al. Mesenchymal stromal cells modulate macrophages in clinically relevant lung injury models by extracellular vesicle mitochondrial transfer. Am J Respir Crit Care Med. 2017; 196(10): 1275-1286. Available in: https://doi.org/10.1164/rccm.201701-0170oc
Antimisiaris SG, Mourtas S, Marazioti A. Exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics. 2018; 10(4): 218. https://doi.org/10.3390/pharmaceutics10040218
Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol. 2005; 33(2): 145-152. https://doi.org/10.1165/rcmb.2004-0330oc
Xu J, Woods CR, Mora AL, Joodi R, Brigham KL, Iyer S, et al. Prevention of endotoxin-induced systemic response by bone marrow-derived mesenchymal stem cells in mice. Am J Physiol Lung Cell Mol Physiol. 2007; 293(1): L131-L141. https://doi.org/10.1152/ajplung.00431.2006
Gupta N, Su X, Popov B, Lee JW, Serikov V, Matthay MA. Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol. 2007; 179(3): 1855-1863. Available in: https://doi.org/10.4049/jimmunol.179.3.1855
Aslam M, Baveja R, Liang OD, Fernandez-Gonzalez A, Lee C, Mitsialis SA, et al. Bone marrow stromal cells attenuate lung injury in a murine model of neonatal chronic lung disease. Am J Respir Crit Care Med. 2009; 180(11): 1122-1130. Available in: https://doi.org/10.1164/rccm.200902-0242oc
van Haaften T, Byrne R, Bonnet S, Rochefort GY, Akabutu J, Bouchentouf M, et al. Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med. 2009; 180(11): 1131-1142. Available in: https://doi.org/10.1164/rccm.200902-0179oc
Baber SR, Deng W, Master RG, Bunnell BC, Taylor BK, Murthy SN, et al. Intratracheal mesenchymal stem cell administration attenuates monocrotaline-induced pulmonary hypertension and endothelial dysfunction. Am J Physiol Heart Circ Physiol. 2007; 292(2): H1120-H1128. Available in: https://doi.org/10.1152/ajpheart.00173.2006
Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M, et al. Mesenchymal stromal cells expressing heme oxygenase-1 reverse pulmonary hypertension. Stem Cells. 2011; 29(1): 99–107. Available in: https://doi.org/10.1002/stem.548
Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, et al. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ. 2012; 2(2): 170-181. Available in: https://doi.org/10.4103/2045-8932.97603
Tuder RM, Marecki JC, Richter A, Fijalkowska I, Flores S. Pathology of pulmonary hypertension. Clin Chest Med. 2007; 28(1): 23-42, vii. Available in: https://doi.org/10.1016/j.ccm.2006.11.010
Humbert M, Sitbon O, Chaouat A, Bertocchi M, Habib G, Gressin V, et al. Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation. 2010; 122(2): 156-163. Available in: https://doi.org/10.1161/circulationaha.109.911818
Klinger JR, Pereira M, Del Tatto M,Brodsky AS, Wu KQ, Dooner MS, et al. Mesenchymal stem cell extracellular vesicles reverse sugen/hypoxia pulmonary hypertension in rats. Am J Respir Cell Mol Biol. 2020; 62(5): 577-587. Available in: https://doi.org/10.1165/rcmb.2019-0154oc
Zhang S, Liu X, Ge LL, Li K, Sun Y, Wang F, et al. Mesenchymal stromal cell-derived exosomes improve pulmonary hypertension through inhibition of pulmonary vascular remodeling. Respir Res. 2020; 21(1): 71. Available in: https://doi.org/10.1186/s12931-020-1331-4
Monroe MN, Zhaorigetu S, Gupta VS, Jin D, Givan KD, Curylo AL, et al. Extracellular vesicles influence the pulmonary arterial extracellular matrix in congenital diaphragmatic hernia. Pediatr Pulmonol. 2020; 55(9): 2402-2411. Available in: https://doi.org/10.1002/ppul.24914
Aliotta JM, Pereira M, Wen S, Dooner MS, Del Tatto M, Papa E, et al. Bone marrow endothelial progenitor cells are the cellular mediators of pulmonary hypertension in the murine monocrotaline injury model. Stem Cells Transl Med. 2017; 6(7): 1595-1606. Available in: https://doi.org/10.1002/sctm.16-0386
Rubenfeld GD, Herridge MS. Epidemiology and outcomes of acute lung injury. Chest. 2007; 131(2): 554-562. Available in: https://doi.org/10.1378/chest.06-1976
Yi X, Wei X, Lv H, An Y, Li L, Lu P, et al. Exosomes derived from microRNA-30b-3p-overexpressing mesenchymal stem cells protect against lipopolysaccharide-induced acute lung injury by inhibiting SAA3. Exp Cell Res. 2019; 383(2): 111454. Available in: https://doi.org/10.1016/j.yexcr.2019.05.035
Curley GF, Hayes M, Ansari B, Shaw G, Ryan A, Barry F, et al. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012; 67(6): 496-501. Available in: https://doi.org/10.1136/thoraxjnl-2011-201059
Wang J, Huang R, Xu Q, Zheng G, Qiu G, Ge M, et al. Mesenchymal stem cell-derived extracellular vesicles alleviate acute lung injury via transfer of miR-27a-3p. Crit Care Med. 2020; 48(7): e599-e610. Available in: https://doi.org/10.1097/ccm.0000000000004315
Xu N, Shao Y, Ye K, Qu Y, Memet O, He D, et al. Mesenchymal stem cell-derived exosomes attenuate phosgene-induced acute lung injury in rats. Inhal Toxicol. 2019; 31(2): 52-60. Available in: https://doi.org/10.1080/08958378.2019.1597220
Zhu Y-G, Feng X-M, Abbott J, Fang X-H, Hao Q, Monsel A, et al. Human mesenchymal stem cell microvesicles for treatment of Escherichia coli endotoxin-induced acute lung injury in mice. Stem Cells. 2014; 32(1): 116-125. Available in: https://doi.org/10.1002/stem.1504
Xu B, Gan CX, Chen SS, Li JQ, Liu MZ, Guo GH. BMSC-derived exosomes alleviate smoke inhalation lung injury through blockade of the HMGB1/NF-κB pathway. Life Sci. 2020; 257: 118042. Available in: https://doi.org/10.1016/j.lfs.2020.118042
Liu J, Chen T, Lei P, Tang X, Huang P. Exosomes released by bone marrow mesenchymal stem cells attenuate lung injury induced by intestinal ischemia reperfusion via the TLR4/NF-κB pathway. Int J Med Sci. 2019; 16(9): 1238-1244. Available in: https://doi.org/10.7150/ijms.35369
Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate radiation-induced lung injury via miRNA-214-3p. Antioxid Redox Signal. 2020. Available in: https://doi.org/10.1089/ars.2019.7965
Wei X, Yi X, Lv H, Sui X, Lu P, Li L, et al. MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induce autophagy. Cell Death Dis. 2020; 11(8): 657. Available in: https://doi.org/10.1038/s41419-020-02857-4
Li QC, Liang Y, Su ZB. Prophylactic treatment with MSC-derived exosomes attenuates traumatic acute lung injury in rats. Am J Physiol Lung Cell Mol Physiol. 2019; 316(6): L1107-L1117. Available in: https://doi.org/10.1152/ajplung.00391.2018
Hao Q, Gudapati V, Monsel A, Park JH, Hu S, Kato H, et al. Mesenchymal stem cell-derived extracellular vesicles decrease lung injury in mice. J Immunol. 2019; 203(7): 1961-1972. Available in: https://doi.org/10.4049/jimmunol.1801534
Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018; 197(1): 104-116. Available in: https://doi.org/10.1164/rccm.201705-0925oc
Ahn SY, Park WS, Kim YE, Sung DK, Sung SI, Ahn JY, et al. Vascular endothelial growth factor mediates the therapeutic efficacy of mesenchymal stem cell-derived extracellular vesicles against neonatal hyperoxic lung injury. Exp Mol Med. 2018; 50(4): 1-12. Available in: https://doi.org/10.1038/s12276-018-0055-8
Porzionato A, Zaramella P, Dedja A, Guidolin D, Van Wemmel K, Macchi V, et al. Intratracheal administration of clinical-grade mesenchymal stem cell-derived extracellular vesicles reduces lung injury in a rat model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2019; 316(1): L6-L19. Available in: https://doi.org/10.1152/ajplung.00109.2018
Braun RK, Chetty C, Balasubramaniam V, Centanni R, Haraldsdottir K, Hematti P, et al. Intraperitoneal injection of MSC-derived exosomes prevent experimental bronchopulmonary dysplasia. Biochem Biophys Res Commun. 2018; 503(4): 2653-2658. Available in: https://doi.org/10.1016/j.bbrc.2018.08.019
Willis GR, Fernandez-Gonzalez A, Reis M, Yeung V, Liu X, Ericsson M, et al. Mesenchymal stromal cell-derived small extracellular vesicles restore lung architecture and improve exercise capacity in a model of neonatal hyperoxia-induced lung injury. J Extracell Vesicles. 2020; 9(1). 1790874. Available in: https://doi.org/10.1080/20013078.2020.1790874
Chaubey S, Thueson S, Ponnalagu D, Alam MA, Gheorghe CP, Aghai Z, et al. Early gestational mesenchymal stem cell secretome attenuates experimental bronchopulmonary dysplasia in part via exosome-associated factor TSG-6. Stem Cell Res Ther. 2018; 9(1):173. Available in: https://doi.org/10.1186/s13287-018-0903-4
World Health Organization. Chronic respiratory diseases. Access date: 2020 October 22. Available in: https://www.who.int/health-topics/chronic-respiratory-diseases
Le Thi Bich P, Nguyen Thi H, Dang Ngo Chau H, Phan Van T, Do Q, Dong Khac H, et al. Allogeneic umbilical cord-derived mesenchymal stem cell transplantation for treating chronic obstructive pulmonary disease: a pilot clinical study. Stem Cell Res Ther. 2020; 11(1): 60. Available in: https://doi.org/10.1186/s13287-020-1583-4
Kokturk N, Y?ld?r?m F, Gülhan PY, Oh YM. Stem cell therapy in chronic obstructive pulmonary disease. How far is it to the clinic? Am J Stem Cells. 2018; 7(3): 56-71. Available in: http://www.ncbi.nlm.nih.gov/pubmed/30245915
He S, Chen D, Hu M, Zhang L, Liu C, Traini D, et al. Bronchial epithelial cell extracellular vesicles ameliorate epitelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization. Nanomedicine. 2019; 18: 259-271. Available in: https://doi.org/10.1016/j.nano.2019.03.010
Maremanda KP, Sundar IK, Rahman I. Protective role of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in cigarette smoke-induced mitochondrial dysfunction in mice. Toxicol Appl Pharmacol. 2019; 385: 114788. Available in: https://doi.org/10.1016/j.taap.2019.114788
Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46(5): 846-848. Available in: https://doi.org/10.1007/s00134-020-05991-x
Taghavi-Farahabadi M, Mahmoudi M, Soudi S, Hashemi SM. Hypothesis for the management and treatment of the COVID-19-induced acute respiratory distress syndrome and lung injury using mesenchymal stem cell-derived exosomes. Med Hypotheses. 2020;144: 109865. Available in: https://doi.org/10.1016/j.mehy.2020.109865
Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 2020; 10(2): 102-108. Available in: https://doi.org/10.1016/j.jpha.2020.03.001
Chrzanowski W, Kim SY, McClements L. Can stem cells beat COVID-19: advancing stem cells and extracellular vesicles toward mainstream medicine for lung injuries associated with SARS-CoV-2 infections. Front Bioeng Biotechnol. 2020; 8: 554. Available in: https://doi.org/10.3389/fbioe.2020.00554
Chen J, Hu C, Chen L, Tang L, Zhu Y, Xu X, et al. Clinical study of mesenchymal stem cell treatment for acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection: a hint for COVID-19 treatment. Engineering (Beijing). 2020; 6(10): 1153-1161. Available in: https://doi.org/10.1016/j.eng.2020.02.006
Matthay MA, Calfee CS, Zhuo H, Thompson BT, Wilson JG, Levitt JE, et al. Treatment with allogeneic mesenchymal stromal cells for moderate to severe acute respiratory distress syndrome (START study): a randomised phase 2a safety trial. Lancet Respir Med. 2019; 7(2): 154-162. Available in: https://doi.org/10.1016/s2213-2600(18)30418-1
Byrnes D, Masterson CH, Artigas A, Laffey JG. Mesenchymal stem/stromal cells therapy for sepsis and acute respiratory distress syndrome. Semin Respir Crit Care Med. 2021; 42(1): 20-39. Available in: https://doi.org/10.1055/s-0040-1713422
Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020; 11(2): 216-228. Available in: https://doi.org/10.14336/ad.2020.0228
Liang B, Chen J, Li T, et al. Clinical remission of a critically ill COVID-19 patient treated by human umbilical cord mesenchymal stem cells: a case report. Medicine (Baltimore). 2020; 99(31): e21429. Available in: https://doi.org/10.1097/md.0000000000021429
Shu L, Niu C, Li R, Huang T, Wang Y, Huang M, et al. Treatment of severe COVID-19 with human umbilical cord mesenchymal stem cells. Stem Cell Res Ther. 2020; 11(1): 361. Available in: https://doi.org/10.1186/s13287-020-01875-5
Pocsfalvi G, Mammadova R, Ramos Juarez AP, Bokka R, Trepiccione F, Capasso G. COVID-19 and extracellular vesicles: an intriguing interplay. Kidney Blood Press Res. 2020; 45(5): 661-670. Available in: https://doi.org/10.1159/000511402
Pinky, Gupta S, Krishnakumar V, Sharma Y, Dinda AK, Mohanty S. Mesenchymal stem cell derived exosomes: a nano platform for therapeutics and drug delivery in combating COVID-19. Stem Cell Rev Rep. 2021; 17(1): 33-43. Available in: https://doi.org/10.1007/s12015-020-10002-z
Bari E, Ferrarotti I, Saracino L, Perteghella S, Torre ML, Corsico AG. Mesenchymal stromal cell secretome for severe COVID-19 infections: premises for the therapeutic use. Cells. 2020; 9(4): 924. Available in: https://doi.org/10.3390/cells9040924
Liao G, Zheng K, Lalu MM, Fergusson DA, Allan DS. A scoping review of registered clinical trials of cellular therapy for COVID-19 and a framework for accelerated synthesis of trial evidence-FAST evidence. Transfus Med Rev. 2020; 34(3): 165-171. Available in: https://doi.org/10.1016/j.tmrv.2020.06.001
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev. 2020; 29(12): 747-754. Available in: https://doi.org/10.1089/scd.2020.0080
Jayaramayya K, Mahalaxmi I, Subramaniam MD, Raj N, Dayem AA, Lim KM, et al. Immunomodulatory effect of mesenchymal stem cells and mesenchymal stem-cell-derived exosomes for COVID-19 treatment. BMB Rep. 2020; 53(8): 400-412. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32731913
Khatri M, Richardson LA, Meulia T. Mesenchymal stem cell-derived extracellular vesicles attenuate influenza virus-induced acute lung injury in a pig model. Stem Cell Res Ther. 2018; 9(1): 17. Available in: https://doi.org/10.1186/s13287-018-0774-8
Li Y, Xu J, Shi W, Chen C, Shao Y, Zhu L, et al. Mesenchymal stromal cell treatment prevents H9N2 avian influenza virus-induced acute lung injury in mice. Stem Cell Res Ther. 2016; 7(1): 159. Available in: https://doi.org/10.1186/s13287-016-0395-z
Qian X, Xu C, Fang S, Zhao P, Wang Y, Liu H, et al. Exosomal microRNAs derived from umbilical mesenchymal stem cells inhibit hepatitis C virus infection. Stem Cells Transl Med. 2016; 5(9): 1190-1203. Available in: https://doi.org/10.5966/sctm.2015-0348