2004, Number s2
<< Back Next >>
Arch Cardiol Mex 2004; 74 (s2)
From cardiac hypertrophy to heart failure: medical treatment
Rosas PM
Language: Spanish
References: 59
Page: 455-461
PDF size: 71.91 Kb.
ABSTRACT
Cardiac Failure is an increase speed problem in the world. Several mechanisms have been proposed as the cause of this epidemiological transition. The principal reason is the augmentation in the survival of patients with coronary heart disease and the improvement in the management of cardiac failure with new drugs. Knowledge of new mechanisms including gene’s regulation, extracelular matrix function, intracardiac vessels, neuroendocrine interrelations, inflammatory activity, immune balance, signal intracellular and extracellular cascade, and mechanical integrity, have permitted a better and rational approach. The influence of paradigms such as endothelin system, sympathovagal balance, oxidative system, angiotensin receptors, aldosteron receptors have been demonstrated on the progression of the cellular damage of patients with cardiac failure. Apoptosis is recognized as a common final way. In this review all these topics are analyzed. Emphasis of new therapeutics ways of treatment are also discussed.
REFERENCES
Kannel WB, Belanger AJ: Epidemiology of heart failure. Am Heart J 1991; 121: 951-957.
Rosas PM, Kuri J: Insuficiencia Cardíaca: Situación actual, perspectivas a futuro. Arch Inst Cardiol Mex 1997; 67: 335-342.
Ho KK, Pinsky JL, Kannel WB, Levy D: The epidemiology of heart failure: the Framingham Study. J Am Coll Cardiol 1993; 22(Suppl A): 6-13.
Williams JF, Bristow MR, Fowler MB, Gary FS, Garson A, Gersh BJ, et al: Guidelines for the evaluation and management of heart failure. Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee on Evaluation and Management of Heart Failure). Circulation 1995; 92: 2764-2784.
Villemont JP, Li Y, Schjoth B, Elfarra M, Carteaux JP, Dopff C, et al: Advised Cardiac failure. New surgical approaches. Presse Med 2000; 25: 1995-2003.
The CONSENSUS Trial Study Group: Effects of enalapril on mortality in severe congestive heart failure: results of the Cooperative North Scandinavian Enalapril Survival Study. N Engl J Med 1987; 316:1429-1435.
The SOLVD Investigators: Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293-302.
Cohn JN, Johnson G, Zieshe S, Cobb F, Francis G, Tristani F, et al: A comparison of enalapril with hydralazine-isosorbide in the treatment of chronic congestive heart failure. N Engl J Med 1991; 325: 303-310.
Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr, Cuddy TE, et al: Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 1992; 327: 669-677.
Rogers WJ, Johnstone DE, Yusuf S, Weiner DH, Gallagher P, Bittner VA, et al: Quality of life among 5,025 patients with left ventricular dysfunction randomized between placebo and enalapril: the Studies of Left Ventricular Dysfunction. J Am Coll Cardiol 1994; 23: 393-400.
Webster KA, Discher DJ, Bishopric NH: Regulation of Fos and jun immediate early genes by redox or metabolic stress in cardiac myocytes. Circ Res 1994; 74: 679-686.
Pennisi E: Superoxides relay Ras proteins oncogenic message. Science 1997; 275: 1567-1568.
Maron BJ, Ferrans VJ, Roberts WC: Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy. Am J Pathol 1975; 79: 387-434.
Zak R, Rabinowitz M, Rajamanickam C, Merten S, Kwiatkowska, Patzer B: Mitochondrial proliferation in cardiac hypertrophy. Basic Res Cardiol 1980; 75: 171-178.
Marin-Garcia J, Goldenthal MJ, Ananthakrishnan R, Pierpont ME, Fricker FJ, Lipshultz SE, et al: Mitochondrial function in children with idiopathic dilated cardiomyopathy. J Inher Metab Dis 1996; 19: 309-312.
Buchwald A, Till H, Unterberg C, Oberschmidt R, Figulla HR, Wiegand V: Alterations of the mitochondrial respiratory chain in human dilated cardiomyopathy. Eur Heart J 1990; 11: 509-516.
Schon EA, Bonilla E, DiMauro S: Mitochondrial DNA mutations and pathogenesis. J Bioenerg Biomembr 1997; 29: 131-149.
Kelly DP, Strauss AW: Inherited cardiomyopathies. N Engl J Med 1994; 330: 913-919.
Tanaka M, Ino H, Ohno K, Hattori K, Sato W, Ozawa T, et al: Mitochondrial mutation in fatal infantile cardiomyopathy. Lancet 1990; 336: 1452-4.
Taniike M, Fukushima H, Yanagihara I, Tsukamoto H, Tanaka J, Fujimura H, et al: Mitochondrial tRNA mutation in fatal cardiomyopathy. Biochem Biophys Res Commun 1992; 186: 47-53.
Silvestri G, Santorelli FM, Shanske S, Whitley CB, Schimmenti LA, Smith SA, DiMauro S: A new mtDNA mutation in the tRNA gene associated with maternally inherited cardiomyopathy. Hum Mutat 1994; 3: 37-43.
Santorelli FM, Mak S-C, Vazquez-Acevedo M, Gonzalez-Astiazaran A, Ridaura-Sanz C, Gonzalez-Halphen D, et al: A novel mtDNA point mutation associated with mitochondrial encephalocardiomyopathy. Biochem Biophys Res Commun 1995; 216: 835-840.
Santorelli FM, Mak S-C, El-Schahawi M, Casali C, Shanske S, Baram TZ, et al: Maternally inherited cardiomyopathy and hearing loss associated with a novel mutation in the mitochondrial tRNA gene (G8363). Am J Hum Genet 1996; 58: 933-939.
Zeviani M, Gellera C, Antozzi C, Rimoldi M, Morandi L, Villani F, et al: Maternally inherited myopathy and cardiomyopathy: association with mutation in mitochondrial DNA tRNA. Lancet 1991; 338: 143-147.
Arbustini E, Diegoli M, Fasani R, Grasso M, Morbini P, Banchieri N, et al: Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am J Pathol 1998; 153: 1501-1510.
Linck B, Boknik P, Eschenhagen T, Muller FU, Neumann J, Nose M, et al: Messenger RNA expression and immunological quantification of phospholamban and SR- Ca ATPase in failing and nonfailing human heart. Cardiovasc Res 1996; 31: 625-632.
Studer R, Reinecke H, Bilger J: Gene expression of the cardiac Na-Ca exchanger in end stage human heart failure. Circ Res 1994; 75: 443-453.
Dalakas MC, Park KY, Mora C, Lee HS, Sivakumar K, Goldfarb LG: Desmin myopathy, a skeletal myopathy with cardiomyopathy caused by mutations in the desmin gene. N Engl J Med 2000; 342: 770-780.
Olson TM, Michels VV, Thibodeau SN, Tai YS, Keating MT: Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science 1998; 280: 750-752.
Mittman C, Eschenhagen T, Scholz H: Cellular and molecular aspects of contractile dysfunction in heart failure. Cardiovasc Res 1998; 39: 267-275.
Colucci WS: Molecular and cellular mechanisms of myocardial failure. Am J Cardiol 1997; 80: 15L-25L.
Narula J, Haider N, Virmani: Programmed myocyte death in end-stage heart failure. N Engl J Med 1996; 335: 1182-1189.
Olivetti G, Abbi R, Quiani F, Kajstura J, Cheng W, Nitahara JA, et al: Apoptosis in the failing heart. N Engl J Med 1997; 336: 1131-1141.
Narula J, Pandey P, Arbustini E, Haider N, Narula N, Kolodgie FD, et al: Apoptosis in heart failure: release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 1999; 96: 8144-8149.
Tanaka M, Ito H, Adachi S, Akimoto H, Nishikawa T, Kasajima T, et al: Hypoxia induces apoptosis with enhanced expression of FAS antigen mRNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426-433.
Rosas PM, Paniagua SR, Kuri J: Muerte celular programada (apoptosis). Arch Inst Cardiol Mex. 1999; 69: 399-403.
Yeh ET: Life and death in cardiovascular system. Circulation 1997; 95: 782-786.
McLellan WR, Schneider MD: Death by design. Programmed cell death in cardiovascular biology and disease. Cir Res 1997; 81: 137-144.
James TN: Normal and abnormal consequences of apoptosis in the human heart. Ann Rev Physiol 1998; 60: 309-325.
Chien KR: Stress pathways and heart failure. Cell 1999; 98: 555-8.
Chien KR, Knowlton KU, Zhu H, Chien S: Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 1991; 5: 3037-46.
Hunter JJ, Grace AA, Chien KR: Molecular and cellular biology of cardiac hypertrophy and failure. In: Chien KR, ed. Molecular basis of heart disease: a companion to Braunwald´s Heart Disease. Philadelphia: W.B. Saunders, 1999: 211-50.
Sadoshima J, Izumo S: Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ Res 1993; 73: 413-23.
Yamazaki T, Komuro I, Kudoh S: Endothelin-1 is involved in mechanical stress-induced cardiomyocyte hypertrophy. J Biol Chem 1996; 271: 3221-8.
Ito H, Hiroe M, Hirata Y, Tsujino M, Adachi S, Shichiri M, et al: Insulin-like growth factor-I induces hypertrophy with enhanced expression of muscle specific genes in cultured rat cardiomyocytes. Circulation 1993; 87: 1715-21.
Duerr RL, Huang S, Miraliakbar HR, Clark R, Chien KR, Ross J Jr: Insulin-like growth factor-1 enhances ventricular hypertrophy and function during the onset of experimental cardiac failure. J Clin Invest 1995; 95: 619-27.
LaMorte VJ, Thorburn J, Absher D, Spiegel A, Brown JH, Chien KR, et al: Gq- and ras-dependent pathways mediate hypertrophy of neonatal rat ventricular myocytes following alpha 1-adrenergic stimulation. J Biol Chem 1994; 269: 13490-6.
Wollert KC, Taga T, Saito M, Narazaki M, Kishimoto T, Glembotski CC, et al: Cardiotrophin-1 activates a distinct form of cardiac muscle cell hypertrophy: assembly of sarcomeric units in series VIA gp130/leukemia inhibitory factor receptor-dependent pathways. J Biol Chem 1996; 271: 9535-45.
Adams JW, Sakata Y, Davis MG, Sah VP, Wang Y, Liggett SB, et al: Enhanced Galphaq signaling: a common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998; 95: 10140-5.
Sheng Z, Knowlton K, Chen J, Hoshijima M, Brown JH, Chien KR: Cardiotrophin 1 (CT-1) inhibition of cardiac myocyte apoptosis via a mitogen-activated protein kinase-dependent pathway: divergence from down-stream CT-1 signals for myocardial cell hypertrophy. J Biol Chem 1997; 272: 5783-91.
Akhter SA, Luttrell LM, Rockman HA, Iaccarino G, Lefkowitz RJ, Koch WJ: Targeting the receptor-Gq interface to inhibit in vivo pressure overload myocardial hypertrophy. Science 1998; 280: 574-7.
Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME: Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995; 270: 1326-31.
Wang Y, Huang S, Sah VP, Ross J Jr, Brown JH, Han J, Chien KR: Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 1998; 273: 2161-8.
Wang Y, Su B, Sah VP, Brown JH, Han J, Chien KR: Cardiac hypertrophy induced by mitogen-activated protein kinase kinase 7, a specific activator for c-Jun NH2-terminal kinase in ventricular muscle cells. J Biol Chem 1998; 273: 5423-6.
Sah VP, Hoshijima M, Chien KR, Brown JH: Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes: dissociation of Ras and Rho pathways. J Biol Chem 1996; 271: 31185-90.
Chien KR: Genes and physiology: molecular physiology in genetically engineered animals. J Clin Invest 1996; 97: 901-9.
Bishop JE, Lindahl G: Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res 1999; 42: 27-44.
Spinale FG, Coker ML, Bond DR, Zellner JL: Myocardial matrix degradation and metalloproteinase activation in the failing heart. A potential therapeutic target. Cardiovasc Res 2000; 46: 225-238.
Kim HE, Dalal SS, Young E, Legato MJ, Weisfeldt ML, D’armiento J: Disruption of the myocardial extracellular matrix leads to cardiac dysfunction. J Clin Invest 2000; 106: 857-866