2020, Number 2
<< Back Next >>
Rev Cub Oftal 2020; 33 (2)
SARS-CoV-2 and its relationship to the visual system
Casanueva CHC, Méndez STJ, González BY, Naranjo FRM, Sibello DS
Language: Spanish
References: 44
Page: 1-14
PDF size: 564.57 Kb.
ABSTRACT
SARS-CoV-2, a new coronavirus affecting humans and causing the disease COVID-19, emerged at the end of last year in China. Ever since then its spread to more than 6 million people worldwide has been a challenge for the health personnel in their struggle to prevent contagion and find the best treatment alternatives. An updated bibliographic search was conducted in various databases with the purpose of describing the ocular alterations reported in the literature which have been caused by the virus as well as the potential ocular effects of the medications used. The incidence of conjunctivitis in patients testing positive for COVID-19 is often low. Although there is evidence of transmission via ocular secretion, no consensus has been achieved about the pathogenic mechanism employed. Justification is provided for the use of ocular protection equipment, particularly by the personnel who should be close to the patients' faces while doing their work. Vertical transmission from mothers to their babies has not been demonstrated, and there is no evidence of ophthalmic disorders in the latter. Chloroquine and hydroxychloroquine are antiviral medications which would only cause ocular toxicity at high doses and lengthy courses. It is proposed to perform complete ophthalmological examination of patients upon recovery from the disease and conduct further studies to shed light on current points of debate.
REFERENCES
Xia J, Tong J, Liu M, et al. Evaluation of coronavirus in tears and conjunctival secretions of patientswith SARS-CoV-2 infection. J Med Virol. 2020;92(6)589-94.
Wu P, Duan F, Luo Ch, et al. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei Province, China. JAMA Ophthalmol. 2020;138(5):575-8.
Zhou Y, Duan Ch, Zeng Y. Ocular findings and proportion with conjunctival SARS-COV-2 in COVID-19 patients. Ophthalmology. 2020;127(7): 982-3.
Guan W, Ni Z, Yu H, et al. Clinical Characteristics of Coronavirus Disease 2019 in China. New Eng J Med. 2020;382(18):1708-20.
Liwen Chen L, Deng Ch, Chen X. Ocular manifestations and clinical characteristics of 534 cases of COVID-19 in China: A cross-sectional study. MedRxiv; 2020. Doi: https://doi.org/10.1101/2020.03.12.20034678
Harrison L. COVID-19 implicated in conjunctivitis. Ophthalmology Times; 2020 [acceso: 25/05/2020]. Disponible en: https://www.ophthalmologytimes.com/covid-19/covid-19-implicated-conjunctivitis/page/0/2
Lu CHW, Liu XF, Jia ZF et al. 2019-nCoV transmission through the ocular surface must not be ignored. Lancet. 2020;395(10224): e39.
Deng W, Bao L, Gao H, et al. Ocular conjunctival inoculation of SARS-CoV-2 can cause mild COVID-19 in Rhesus macaques. Biorxiv; 2020. Doi: https://doi.org/10.1101/2020.03.13.990036
Yu Jun IS, Anderson DE, ZhengKang AE, et al. Assessing viral shedding and infectivity of tears in coronavirus disease 2019 (COVID-19) patients. Ophthalmology; 2020. Doi: https://doi.org/10.1016/j.ophtha.2020.03.026
Deng ChY, Yang Ch, Huawen Ch, et al. Ocular Dectection of SARS-CoV-2 in 114 Cases of COVID-19 Pneumonia in Wuhan, China: An Observational Study. The Lancet; 2020 [acceso: 20/06/2020]. Disponible en: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3543587
Qiao Ch, Zhang H, He M, et al. Symptomatic COVID-19 in eye professionals in Wuhan, China. Ophthalmology. 2020. Doi: 10.1016/j.ophtha.2020.04.026
American Academy of Ophthalmology. In Memoriam: Ophthalmologist Deaths From COVID-19. AAO; 2020 [acceso: 20/05/2020]. Disponible en: https://www.aao.org/coronavirus/deaths
Seah I, Agrawal R. Can the Coronavirus Disease 2019 (COVID-19) Affectthe Eyes? A Review of Coronaviruses and Ocular Implications in Humans and Animals. 2020:391-5. Doi: https://doi.org/10.1080/09273948.2020.1738501
Tortorici MA, Veesler D. Structuralinsightsinto coronavirus entry. Adv Virus Res. 2019;105:93-116.
Lange C, Wolf J, Auw-Haedrich C, et al. Expression of the COVID-19 receptor ACE2 in the human conjunctiva. J Med Virol. 2020. Doi: https://doi.org/10.1002/jmv.25981
Marinho Paula M, Marcos Allexya AA, Romano André C, et al. Retinal findings in patients with COVID-19. The Lancet. 2020;395(10237):1610.
Wang Y, Detrick B, Yu ZX, et al. The role of apoptosis withinthe retina of coronavirus-infected mice. Invest Ophthalmol Vis Sci. 2000;41:3011-8.
Moriguchi T, Harii N, Goto J, et al. A first case of meningitis/encephalitis associated with SARS-coronavirus-2. Int J Infect Dis. 2020;94:55-8.
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology. 2018;23(2):130-7.
Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382:727-33.
Tesini Brenda L. Coronavirus y síndromes respiratorios agudos (COVID-19, MERS y SARS). EE.UU.: Manual MSD. 2020 [acceso: 02/06/2020]. Disponible en: https://www.msdmanuals.com/es/hogar/infecciones/virus-respiratorios/coronavirus-y-s%C3%ADndromes-respiratorios-agudos-covid-19,-mers-y-sars
Ting D, Yip MYT, Ji Peng OL, et al. The complexities of COVID-19 in Ophthalmology. Who, what, when, why, and how. A timeline of thepandemic's impact on our specialty. The Ophthalmologist. 2020 [acceso: 02/06/2020]. Disponible en: https://theophthalmologist.com/subspecialties/the-complexities-of-covid-19-in-ophthalmology
Van der Hoek L, Pyrc K, Jebbink MF, et al. Identification of a new human coronavirus. NatMed. 2004;10(4):368-73.
Vabret A, Mourez T, Dina J, et al. Human coronavirus NL63, France. Emerg Infect Dis. 2005;11(8):1225-9.
Loon SC, Teoh SCB, Oon LLE, et al. The severe acute respiratory syndrome coronavirus in tears. British J Ophthalmol. 2004;88(7):861-3.
Farooq IA; Rathore A. Neurological manifestations and complications of COVID-19: A literature review. J Clinic Neurosc. 2020;77:8-12.
Zeng L, Xia S, Yuan W, et al. Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China. JAMA Pediatr. 2020. DOI: 10.1001/jamapediatrics.2020.0878
Zhu H, Wang L, Fang C, et al. Clinical analysis of 10 neonates born to mothers with 2019-nCoV pneumonia. Transl Pediatr. 2020;9(1):51-60.
Chen H, Guo J, Wang C, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395(10226):809-15.
Durán P, Berman S, Niermeyer S, Jaenisch T, Forster T, Gómez R, et al. COVID-19 y la salud del recién nacido: revisión sistemática. Rev Panam Salud Públ. 2020 [acceso: 23/05/2020]. Disponible en: https://www.scielosp.org/article/rpsp/2020.v44/e54/en/
Guo YR, Cao QD, Hong ZS. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak-an update on the status. Milit Med Res. 2020;7(1):1-10.
Assef AP, Martínez HBR, González RP, García AB, Padrón MP, Rodríguez RO. Protocolo para el tratamiento de la enfermedad por COVID-19 SARS-CoV-2) en pacientes obstétricas ingresadas en cuidados intensivos. Rev Cubana Med Intens Emerg. 2020;19(2):74.
Cabral RTS, Klumb EM, Couto MIN, et al. Evaluation of toxicretinopathy caused by antimalarial medications with spectral domain optical coherence tomography. Arq Bras Oftalmol. 2019;82(1):12-7.
Aguiar ACC, Murce E, Cortopassi WA, et al. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int J Parasitol Drugs Resist. 2018;8(3):459-64.
Jorge A, Ung C, Young LH. Hydroxy chloroquine retinopathy - implications of research advances for rheumatology care. Nat Rev Rheumatol. 2018;14(12):693-703.
Stokkermans TJ, Trichonas G. Chloroquine and Hydroxychloroquine Toxicity. StatPearls Publishing; 2020 [acceso: 02/06/2020]. Disponible en: https://www.ncbi.nlm.nih.gov/books/NBK537086/
Marmor MF, Kellner U, Lai TY. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy. Ophthalmology. 2016;123(6):1386-94.
European Society of Cataract and Refractive Surgeons (ESCRS). Assessing retinal risk with COVID-19 treatment. Eurotimes; 2020 [acceso: 02/06/2020]. Disponible en: https://www.eurotimes.org/assessing-retinal-risk-with-covid-19-treatment/
Yusuf IH, Sharma S, Luqmani R, et al. Hydroxychloroquine retinopathy. Eye (Basingstoke). 2017;31(6):828-45.
Garrity ST, Jung JY, Zambrowski O, et al. Early hydroxychloroquine retinopathy: Optical coherence tomography abnormalities preceding Humphrey visual field defects. Brit J Ophthalmol. 2019;103(11)1600-4.
Ullberg S, Lindquist NG, Sjòstrand SE. Accumulation of chorio-retinotoxicdrugs in thefoetal eye. Nature. 1970;227(5264):1257-8.
Meijer WJ; Bruinse HW; van den Broek MPH, et al. Oseltamivir and its active metabolite cross the placenta at significant levels. Clinic Infect Dis. 2012;54(11):1676-7.
Donner B, Niranjan V, Hoffmann G. Safety of oseltamivir in pregnancy: a review of preclinical and clinical data. Drug Saf. 2010;33(8):631-42.
National Prevention Information Network. Recommendations for the use of antiretroviral drugs in pregnant women with HIV infection and interventions to reduce perinatal HIV transmission in the United States. AIDSinfo; 2020 [acceso: 02/06/2020]. Disponible en: https://aidsinfo.nih.gov/guidelines/html/3/perinatal/212/lopinavir-ritonavir--kaletra--lpv-r-