2021, Number 5
<< Back Next >>
Med Int Mex 2021; 37 (5)
How does sulodexide work in diabetic nephropathy?
Frati-Munari AC, Bautista-Alfaro MA
Language: Spanish
References: 61
Page: 728-737
PDF size: 260.13 Kb.
ABSTRACT
A recently published bibliographic analysis supported the usefulness of sulodexide to
diminish micro and macroalbuminuria in diabetic nephropathy. This paper discusses
the biological effects of sulodexide in reducing diabetic nephropathy, namely: glycocalyx
restoration, improvement of endothelial functioning, recovering of heparan
sulfate in the glomerular filtration membrane, decreasing of inflammatory mediators
and regulation of fibrosis mediators.
REFERENCES
Méndez-Durán A, Méndez-Bueno JF, Tapia-Yáñez T, Muñóz-Montes A, Aguilar-Sánchez L. Epidemiología de la insuficiencia renal en México. Dialisis Transpl 2010; 31: 7-11. DOI: 10.1016/S1886-2845(10)70004-7.
Aldrete-Velasco JA, Chiquete E, Rodríguez-García JA, Rincón-Pedrero R, Correa-Rotter R, Peña-García R, et al. Mortalidad por enfermedad renal crónica y su relación con la diabetes en México. Med Int Mex 2018; 34: 536-45. https://doi.org/10.24245/mim.v34i4.1877.
American Diabetes Association. Standards of medical care in diabetes- 2017. Diabetes Care 2017; 40 (suppl 1): S1-S135.
Lewis EJ, Hunsicker LG, Bain RP, Rhode RD. The effect of angiotensin-converting-enzyme inhibition in diabetic nephropathy. N Engl J Med 1993; 329: 1456-62. DOI: 10.1056/ NEJM199311113292004.
Brenner BM, Cooper ME, de Zeeuw D, Keane W, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001; 345: 861-9. doi: 10.1056/NEJMoa011161.
Lewis EJ, Hunsicker LG, Clarke WR, Berl T, et al. Renoprotective effect of the angiotensin receptor antagonist Irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001; 345: 851-60. doi: 10.1056/ NEJMoa011303.
Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N Engl J Med 2017; 377: 1765-76. DOI: 10.1056/NEJMra1700312.
Bergenstal RM, Tamborlane WV, Ahmann A, Buse JB, et al. Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 2010; 363: 311-20. doi: 10.1056/NEJMoa1002853.
De Zeeuw D, Heerspink HJL. Unmet need in diabetic nephropathy: failed drugs or trials. Lancet Diabetes Endocrinol 2016; 4: 638-40. doi: 10.1016/S2213-8587(16)30045-6.
Frati-Munari AC. La sulodexida disminuye la albuminuria en la nefropatía diabética. Med Int Mex 2020; 36 (4): 530- 542. https://doi.org/10.24245/mim.v36i4.3068.
Heerspink HJL, Greene T, Tighiouart H, gansevoort RT, Coresh J, Simon AL, et al. Change in albuminuria as a surrogate endpoint for progression of kidney disease: a metaanalysis of treatment effects in randomized clinical trials. Lancet Diabetes Endocrinol 2019; 7: 128-139. https://doi. org/10.1016/S2213-8587(19)30085-3.
Frati-Munari AC. Glicosaminoglicanos en enfermedades vasculares. Rev Mex Angiol 2012; 40: 89-99.
Haremberg J. Review of pharmacodynamics, pharmacokynetics, and therapeutic properties of sulodexide. Med Res Rev 1998; 18: 1-20. doi: 10.1002/(sici)1098- 1128(199801)18:1<1::aid-med1>3.0.co;2-4.
Veraldi N, Guerrini M, Urso E, Risi G, Bertini S, Bensi D, et al. Fine structural characterization of sulodexide. J Pharm Biomed Anal 2018; 156: 67-79. doi: 10.1016/j. jpba.2018.04.012.
Carroll BJ, Piazza G, Goldhaber SZ. Sulodexide in venous disease. J Thromb Haemost 2019; 17: 31-38. doi: 10.1111/ jth.14324.
Hoppensteadt DA, Fareed J. Pharmacological profile of sulodexide. Int Angiol 2014; 33: 229-35.
Munari ACF, Cervera LFF. Inflammation, metalloproteinases, chronic venous disease and sulodexide. J Cardiovasc Dis Diagn 2015; 3: 203-10. DOI:10.4172/2329-9517.1000203.
Gambaro G, Van der Woude FJ. Glycosaminoglycans use in treatment of diabetic nephropathy. J Am Soc Nephrol 2000; 11: 359-68. DOI:10.1159/000017267.
Wijnhoven TJM, Lensen JFM, Rops AI, McCarthy KJ, Van der Vlag J, Berden JHM et al. Anti-proteinuric effects of glycosaminoglycan-based drugs. Curr Opin Mol Ther 2007; 9: 364-77.
Abaterusso C, Gambaro G. The role of glycosaminoglycans and sulodexide in the treatment of diabetic nephropathy. Treat Endocrinol 2006; 5: 211-22. doi: 10.2165/00024677- 200605040-00002.
Gambaro G, Kong NCT. Glycosaminoglycan treatment in glomerulonephritis? An interesting option to investigate. J Nephrol 2010; 23: 244-252.
Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 1989; 32: 219-26. doi: 10.1007/BF00285287.
Goligorsky MS. Vascular endothelium in diabetes. Am J Physiol Renal Physiol 2017; 312: F266-F275
Satchell SC, Tooke JE. What is the mechanism of microalbuminuria in diabetes: a role for the glomerular endothelium” Diabetología 2008; 51: 714-25. doi: 10.1152/ ajprenal.00473.2016.
Haraldsson B, Sörensson J. Why do we not all have proteinuria? An update of our current understanding of the glomerular barrier. News Physiol Sci 2004; 19: 7-10. doi: 10.1152/nips.01461.2003.
Frati-Munari AC. Importancia médica del glucocáliz endotelial. Arch Cardiol Mex 2013; 83: 303-12. https://doi. org/10.1016/j.acmx.2013.04.015.
Frati-Munari AC. Importancia médica del glucocáliz endotelial. Parte 2. Su papel en enfermedades vasculares y complicaciones de la diabetes mellitus. Arch Cardiol Mex 2014; 84: 110-16. DOI: 10.1016/j.acmx.2013.10.006.
Singh A, Satchell SC, Neal C, McKenzie EA, Tooke JE, Mathieson PW. Glomerular endothelial glycocalyx constitutes a barrier to protein permeability. J Am Soc Nephrol 2007; 18: 2885-93. DOI: https://doi.org/10.1681/ASN.2007010119.
Katz A, Van-Dijk DJ, Aingorn H, Erman A, Davies M, Darmon D, et al. Involvement of human heparanse in the pathogenesis of diabetic nephropathy. IMAJ 2002; 4: 996-1002.
Edge ASB, Spiro RG. A specific structural alteration in the heparán sulphte of human glomerular basement membrane in diabetes. Diabetologia 2000; 43: 1056-9. doi: 10.1007/s001250051489.
Singh A, Fridén V, Dasgupta I, Foster RR, Welsh GI, Tooke JE, et al. High glucose causes dysfunction of human glomerular endothelial glycocalyx. Am J Physiol Renal Physiol 2011; 300: F40-F48. doi: 10.1152/ajprenal.00103.2010.
Nieuwdorp M, Mooij HL, Kroon J, Atasever H, Spaan JA, Ince C, et al. Endothelial glycocalix damage coincides with microalbuminuria in type 1 diabetes. Diabetes 2006; 55: 1127-32. doi: 10.2337/diabetes.55.04.06.db05-1619.
Broekhuisen LN, Lemkes BA, Mooij HL, Meuwese MC, Verberne H, Holleman F, et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 2010; 53: 2646-55. doi: 10.1007/s00125-010-1910-x.
Noble MIM, Drake-Holland AJ. Review: Hyperglycemia and the vascular glycocalyx: the key to microalbuminuria and cardiovascular disease in diabetes mellitus? Br J Diabetes Vasc Dis 2010; 10: 66-70. https://doi. org/10.1177%2F1474651409357035.
Mathison Y, Garrido MR, Israel A, Quero Z, Fernández H. Efecto del glicosaminoglicano sulodexida sobre la actividad de la sintasa de óxido en la corteza renal de ratas con diabetes tipo 1. Rev Latinoamer Hipert 2008; 3: 182-9.
Ciszewicz M, Polubinska A, Antoniewicz A, Suminska- Jazinska K, Breborowicz A. Sulodexide suppresses inflammation in human endothelial cells and prevents glucose cytotoxicity. Transl Res 2009; 153: 118-23. doi: 10.1016/j. trsl.2008.12.007.
Suminska-Jasinska K, Polubinska A, Ciszewicz M, Mistacki A, Antoniewicz A, Breborowicz A, et al. Sulodexide reduces senescence-related changes in human endothelial cells. Med Sci Monit 2011; 17: CR222-6. doi: 10.12659/ msm.881719.
Urbanek T, Zbigniew K, Begier-Krasinska B, Baum E, Breborowicz A. Sulodexide suppresses inflammation in patients with chronic venous insufficiency. Int Angiol 2015; 34: 589-96.
Sosinska P, Baum E, Mackowiak B, Maj M, Suminska-Jasinska K, Staniszewski R, Breborowicz A. Sulodexide reduces the proinflammatory effect of serum from patients with peripheral artery disease in human endothelial cells. Cell Physiol Biochem 2016; 40: 1005-12. doi: 10.1159/000453157.
Gabryel B, Jarzabek K, Machnik G, Adamczyk J, Belowsky D, Obuchowicz E, Urbanek T. Superoxide dismutase 1 and glutathione peroxidase 1 are involved in the protective effect of sulodexide on vascular endothelial cells exposed to oxygen-glucose deprivation. Microvasc Res 2016; 103: 26-35. doi: 10.1016/j.mvr.2015.10.001.
Giurdanella G, Lazzara F, Caporarello N, Lupo G, Anfuso CD, Enandi CM, et al. Sulodexide prevents activation of the PLA2/COX-2/VEGF inflammatory pathway in human retinal endothelial cells by blocking the effect of AGE/RAGE. Miochem Pharmacol 2017; 142: 145-154. doi: 10.1016/j. bcp.2017.06.130.
Niderla-Bielinska J, Bartowiak K, Ciszek B, Janowska-Steifer E, Krejner A, Ratajska A. Sulodexide inhibits angiogenesis via decreasing DII4 and Notch 1 expression in mouse proepicardial explant cultures. Fundam Clin Pharmacol 2018: doi:10.1111/fep12418.
Pletinck A, Van Landshoot M, Laukens D, Passlick-Deetjen J, Vanholder R, et al. Oral supplementation with sulodexide inhibits neo-angiogenesis in rat model of peritoneal perfusion. Nephrol Dial Transplant 2012; 27: 548-56. doi: 10.1093/ndt/gfr370.
Li T, Liu X, Zhao Z, Ni L, Liu C. Sulodexide recovers endothelial function through reconstructing glycocalyx in the balloon-injury rat carotid artery. Oncotarget 2017; 8: 91350-61. doi: 10.18632/oncotarget.20518
Olde Engberink RHG. Rorije NMG, Lambers Heerspink HJ, De Zeeuw DD, van den Born BJH, Vogt L. The blood pressure lowering potential of sulodexide-a systematic review and meta-analysis. Br J Clin Pharmacol 2015; 80: 1245-53. doi: 10.1111/bcp.12722.
Olde Engberink RHG, Heerspink HJL, de Zeeuw D, Vogt L. Blood pressure lowering effects of sulodexide depends om albuminuria severity: post-hoc analysis of the sulodexide microalbuminuria and macroalbuminuria studies. Br J Clin Pharmacol 2016; 82: 1351-7. doi: 10.1111/bcp.13062.
Raffetto JD, Calanni F, Mattana P, Khalil RA. Sulodexide promotes arterial relaxation via endothelium-dependent nitric oxide-mediated pathway. Biochem Pharmacol 2019; 66:347-356. https://doi.org/10.1016/j.bep.2019.04.021.
Fagerrud JL, Tarnov L, Jacobsen P, Stenman S, Nielsen FS, Petterson-Fernholm KJ, et al. Predisposition to essential hypertension and development of diabetic nephropathy in IDDM patients. Diabetes 1998; 47: 439-44. doi: 10.2337/ diabetes.47.3.439.
Demova H, Boleckova J, Rose D, Koeppel H, Prochazka B, Brunerova L, et al. Gene polymorphisms in patients with type 2 diabetes and diabetes nephropathy. Centr Eur J Biol 2012; 7: 210-18. DOI: 10.2478/s11535-012-0003-x.
Gurley SB, Ghosh S, Johnson K, Azushima K, Sakban RB, George SE, et al. Inflammation and immunity pathway regulate genetic susceptibility to diabetic nephropathy. Diabetes 2018; 67: 2096-2106. doi: 10.2337/db17-1323.
Ceol M, Nerlich A, Baggio B, Anglani E, Sauer U, Schleicher E, Gambaro G. Increased glomerular Alpha 1 (IV) collagen expression and deposition in long-term diabetic rats is prevented by chronic glycosaminoglycan treatment. Lab Invest 1996; 74: 484-95.
Ceol M, Gambaro G, Sauer U, Baggio B, Anglani F, Forino F, et al. Glycosaminoglycan therapy prevents TGF-β1 overexpression and pathologic changes in renal tissue of long-term diabetic rats. J Am Soc Nephrol 2000; 118: 2324-36. doi: 10.1681/ASN.V11122324.
Masola V, Zaza G, Gambaro G. Sulodexide and glycosaminoglycans in the progression of renal disease. Nephrol Dial Transplant 2014¸29: i74-i79. https://doi.org/10.1093/ ndt/gft389.
Gambaro G, Cavazzana AO, Luzzi P, Piccoli A, Borsatti A, Crepaldi G, et al. Glycosaminoglycans prevent morphological renal alterations and albuminuria in diabetic rats. Kidney Int 1992; 42: 285-91. doi: 10.1038/ki.1992.288.
Gambaro G, Venturini AP, Noonan DM, Fries W, Re G, Garbisa S, et al. Treatment with glycosaminoglycan formulation ameliorates experimental diabetic nephropathy. Kidney Int 1994; 46: 797-806. doi: 10.1038/ki.1994.335.
Naggi A, Casu B, Perez M, Torri G, Cassinelli G, Penco S, et al. Modulation of heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J Biol Chem 2005; 280: 12103-13. doi: 10.1074/jbc.M414217200.
Masola V, Onisto M, Zaza G, Lupo A, Gambaro G. A new mechanism of action of sulodexide in diabetic nephropathy: inhibits heparanase-1 and prevents FGF-2-induced renal epithelial-mesenchymal transition. J Transl Med 2012; 10: 213. doi: 10.1186/1479-5876-10-213.
Cha JJ, Kang YS, Hyun YY, Han SY, Jee YH, Han KH, et al. Sulodexide improves renal function through reduction of vascular endotelial growth factor in type 2 diabetic rats. Life Sci 2013; 82: 1118-24. doi: 10.1016/j.lfs.2013.04.008.
Wijnhoven TJ, Lensen JF, Rops AL, van der Vlag J, Kolset SO, Bangstad HJ, et al. Aberrant heparan sulfate profile in the human diabetic kidney offers new clues for therapeutics glycomimetics. Am J Kidney Dis 2006; 48: 250-61. doi: 10.1053/j.ajkd.2006.05.003.
Wendt T, Tanji N, Guo J, Hudson BI, Bierhaus A, Ramasamy R, et al. Glucose glycation, and RAGE: implications for amplification of celular dysfunction in diabetic nephropathy. J Am Soc Nephrol 2003; 14: 1383-95. doi: 10.1097/01. asn.0000065100.17349.ca.
Xu G, Qin Q, Yang M, Qiao Z, Gu Y, Niu J. Heparanase-driven inflammation from the AGEs-stimulated macrophages changes the functions of glomerular endothelial cells. Diab Res Clin Pract 2017; 124: 30-40. doi: 10.1016/j. diabres.2016.12.016.