2021, Number 2
<< Back Next >>
Acta Ortop Mex 2021; 35 (2)
Biomechanical analysis of interespinous ligamentoplasty with polyester fiber after discectomy
Martínez-López L, Hermida-Ochoa J, Hermida-Ochoa E, Cuevas-Andrade J, Benavides-Rodríguez D
Language: Spanish
References: 19
Page: 125-131
PDF size: 282.91 Kb.
ABSTRACT
Introduction: There are different pathologies of the lumbar spine that condition a biomechanical and clinical instability for its treatment, various stabilization techniques have been carried out that try to preserve the movement and the transmission of load of the affected segment such as the interspinatus ligamentplasty with Dallos
® fiber.
Objective: To show the biomechanical variations of functional segment of lumbar spine of pigs, before and after performing the discectomy and ligamentoplasty with Dallos
® fiber.
Material and methods: The lumbar segment was mounted in a servo-hydraulic multiaxial simulator. Mobility ranges of flexion, extension, lateral flexion and axial rotations were simulated under three conditions: 1. Natural segment, 2. Discectomy segment, and 3. Disectomized segment plus ligamentoplasty with Dallos
® fiber. The mobility ranges are made up to a torque of 7.5 N-m The data of the torques and mobility ranges was collected in the simulator program and the results of the biomechanical changes between the three conditions described were plotted.
Results: It was shown that lumbar biomechanics is affected after discectomy mainly in flexion and extension. In the left axial bending and rotation movements, an alteration of torque and mobility ranges was found.
Conclusions: The ligamentoplasty recovers part of the stability lost after discectomy preserving part of the disc height without reaching to equalize the movements as in the natural segment. After discectomy the distribution of force suggests that residual instability with ligament plasty may represent facet overload.
REFERENCES
Panjabi MM. Clinical spinal instability and low back pain. J Electromyogr Kinesiol. 2003; 13(4): 371-9.
Panjabi MM. The stabilizing system of the spine: Part I. function, dysfunction, adaptation, and enhancement. J Spinal Disord. 1992; 5(4): 383-9.
Sengupta DK. Dynamic stabilization devices in the treatment of low back pain. Orthop Clin North Am. 2004; 35(1): 43-56.
Posner I, White AA, Edwards WT, Hayes WC. A biomechanical analysis of the clinical stability of the lumbar and lumbosacral spine. Spine (Phila Pa 1976). 1982; 7: 374-89.
Kirkaldy-Willis WH, Farfan HF. Instability of the lumbar spine. Clin Orthop Relat Res. 1982; 165: 110-23.
Chan AK, Sharma V, Robinson LC, Mummaneni P V. Summary of guidelines for the treatment of lumbar spondylolisthesis. Neurosurg Clin N Am [Internet]. 2019; 30(3): 353-64. Available from: https://doi.org/10.1016/j.nec.2019.02.009
Kanayama M, Togawa D, Hashimoto T, Shigenobu K, Oha F. Motion-preserving surgery can prevent early breakdown of adjacent segments. J Spinal Disord Tech. 2009; 22(7): 463-7.
Alpízar-Aguirre A, Guevara-Alvarez A, Rosales-Olivares LM, Zárate-Kalfópulos B, Sánchez-Bringas G, Reyes-Sánchez A. Estabilización dinámica interespinosa versus fijación transpedicular y artrodesis en el tratamiento del conducto lumbar estrecho en pacientes de 45 a 65 años de edad. Acta Ortop Mex. 2012; 26(6): 347-53.
Okuda S, Nagamoto Y, Matsumoto T, Sugiura T, Takahashi Y, Iwasaki M. Adjacent segment disease after single segment posterior lumbar interbody fusion for degenerative spondylolisthesis. Spine. 2018; 43(23): E1384-8.
Panjabi MM. The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis. J Spinal Disord. 1992; 5(4): 390-6; discussion 397.
Yue JJ, Timm JP, Panjabi MM, Jaramillo-de la Torre J. Clinical application of the Panjabi neutral zone hypothesis: the Stabilimax NZ posterior lumbar dynamic stabilization system. Neurosurg Focus. 2007; 22(1): E12.
David G, Marsh J, Mahir S, Leyte A. A prospective randomised controlled trial to assess the efficacy of dynamic stabilisation of the lumbar spine with the Wallis ligament. Eur Spine J. 2014; 23(10): 2156-60.
Félix-Garza R, Lagarda-Cuevas J, Chávez-Maqueda MF, Ladewig-Bernáldez GI. Espondilolistesis lumbar degenerativa de un solo segmento tratada con espaciador interespinoso. Acta Ortop Mex. 2014; 28(2): 88-94.
Wilke HJ, Drumm J, Haussler K, MacK C, Kettler A. Biomechanik der interspinosen Platzhalter. Der Orthopade. 2010; 39(6): 565-72.
Beckmann A, Nicolini LF, Grevenstein D, Backes H, Oikonomidis S, Sobottke R, et al. Biomechanical in vitro testof a novel dynamic spinal stabilization system incorporating polycarbonate urethane material under physiological conditions. J Biomech Eng. 2020; 142(1): 011005.
Senegas J, Etchevers JP, Vital JM, Baulny D, Grenier F. Recalibration of the lumbar canal, an alternative to laminectomy in the treatment of lumbar canal stenosis. Rev Chir Orthop Reparatrice Appar Mot. 1988; 74(1): 15-22.
Fehlings MG, Chua SY. Interspinous ligamentoplasty. J Neurosurg Spine. 2010; 13(1): 24-5.
Hong SW, Lee HY, Kim KH, Lee SH. Interspinous ligamentoplasty in the treatment of degenerative spondylolisthesis: midterm clinical results. clinical article. J Neurosurg Spine. 2010; 13(1): 27-35.
Rosales-Olivares LM, Alpízar-Aguirre A, Miramontes-Martínez V, Zárate-Kalfópulus B, Reyes-Sánchez A. Estabilización dinámica interespinosa en discectomía lumbar. Seguimiento de cuatro años. Cir Cir. 2010; 78(6): 495-9.
EVIDENCE LEVEL
IV