2021, Number 3
<< Back
Acta Med 2021; 19 (3)
Risks and recommendations for safe travel during the pandemic caused by the SARS-CoV-2 virus: Mexico
Cortázar MLA, Vite VX, Morales FJA, Díaz RJB, Ramírez VIO, Perón MLÁ, García OZR, Cruz SAX, Chávez AJE, Mosqueda MEE, Gutiérrez BD, Vilchis HJ, Vásquez MLM, Valadez GY, García LML, Bautista CP, Ángel AAH, Wong CRM
Language: Spanish
References: 44
Page: 457-469
PDF size: 288.69 Kb.
ABSTRACT
The COVID-19 pandemic has generated a great impact on international tourism due to the risk of infection by the SARS-CoV-2 virus, causing important restrictions for travelers. The risk of infection depends on the means of transportation used at the time of travel and the proximity to an infected person, being 34.3% in buses, 2.6-50% depending on the type of ship selected, 9.2% when traveling by plane and 1% by train depending on the time and exposure. For each means of transport, different protection measures have been implemented to ensure, as far as possible, a safe trip; either by limiting the number of passengers, establishing interpersonal distancing with free intermediate seats, which represent the main high-risk areas, adequate air circulation, as well as following hygienic and personal protection measures. Similarly, each country has implemented different restrictive strategies or requirements, which may change in relation to the dynamics of the pandemic; and in which case, travelers should be aware of them prior to travel. These requirements are dynamic and can be consulted through the International Air Transport Association (IATA). Mexico is one of the few countries, to date, that has not generated restrictions or requirements beyond a health declaration. Although the emergency vaccination process is being implemented around the world, it has been demonstrated that the correct follow-up of protective measures remains the main factor for prevention and protection against the risk of SARS-CoV-2 infection.
REFERENCES
Beauté J, Spiteri G. Travel-associated COVID-19: a challenge for surveillance? Euro Surveill. 2020; 25 (37): 2001641. doi: 10.2807/1560-7917.ES.2020.25.37.2001641.
World Health Organization. Coronavirus (COVID-19) Dashboard. [Access August 4, 2021] Available in: https://covid19.who.int/?gclid=CjwKCAjwoNuGBhA8EiwAFxomAzXxiixBjdBcyxcSxjUj05zM8SPAnm2fQnHvpvqgbseP1290cs8AqBoCABAQAvD_BwE
Palacio Mejía LS, Wheatley Fernández JL, Ordoñez Hernández I, López Ridaura R, López-Gatell Ramírez H, Hernández Ávila M et al. Estimación del exceso de mortalidad por todas las causas durante la pandemia del Covid-19 en México. Salud Publica Mex. 2021; 63: 211-224. doi: 10.21149/12225.
Dadras O, Shahrokhnia N, Borran S, Asadollahi-Amin A, SeyedAlinaghi SA. Factors associated with COVID-19 morbidity and mortality: a narrative review. J Iran Med Counc. 2020; 3 (4): 209-218.
World Tourism Organization. Covid-19 related travel restrictions a global review for tourism. Ninth report as of 8 march 2021. [Consult May 11, 2021] Available in: https://webunwto.s3.eu-west-1.amazonaws.com/s3fs-public/2021-03/210309-Travel-Restrictions.pdf
IATA. Travel Centre. COVID-19 travel regulations map. [Accessed August 04, 2021] Available in: https://www.iatatravelcentre.com/world.php
Khatib AN, Carvalho AM, Primavesi R, To K, Poirier V. Navigating the risks of flying during COVID-19: a review for safe air travel. J Travel Med. 2020; 27 (8): taaa212. doi: 10.1093/jtm/taaa212.
Mangili A, Gendreau MA. Transmission of infectious diseases during commercial air travel. Lancet. 2005; 365 (9463): 989-996. doi: 10.1016/S0140-6736(05)71089-8.
Pang JK, Jones SP, Waite LL, Olson NA, Armstrong JW, Atmur RJ et al. Probability and estimated risk of SARS-CoV-2 transmission in the air travel system. Travel Med Infect Dis. 2021; 43: 102133. doi: 10.1016/j.tmaid.2021.102133.
Milne RJ, Cotfas LA, Delcea C, Craciun L, Molanescu AG. Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19. PLoS One. 2020; 15 (11): e0242131. doi: 10.1371/journal.pone.0242131.
Barnett A. Covid-19 risk among airline passengers: should the middle seat stay empty? medRxiv. 2020. doi: 10.1101/2020.07.02.20143826.
Dietrich WL, Bennett JS, Jones BW, Hosni MH. Laboratory modeling of SARS-CoV-2 exposure reduction through physically distanced seating in aircraft cabins using bacteriophage aerosol - november 2020. MMWR Morb Mortal Wkly Rep. 2021; 70 (16): 595-599. doi: 10.15585/mmwr.mm7016e1.
The National Preparedness Leadership Initiative is a joint program of the Harvard T.H. Chan School of Public Health and the Harvard Kennedy School of Government, Center for Public Leadership. Assessment of Risks of SARS-CoV-2 Transmission During Air Travel and Non-Pharmaceutical Interventions to Reduce Risk. Phase One Report: Gate-to-Gate Travel Onboard Aircraft. Faculty and Scientists at the Harvard T.H. Chan School of Public Health. Available in: https://cdn1.sph.harvard.edu/wp-content/uploads/sites/2443/2020/10/HSPH-APHI-Phase-I-Report.pdf
Hu M, Wang J, Lin H, Ruktanonchai CW, Xu C, Meng B et al. Transmission risk of SARS-CoV-2 on airplanes and high-speed trains. medRxiv. 2020. Available in: https://doi.org/10.1101/2020.12.21.20248383
Organización Mundial de la Salud. Recomendaciones sobre el uso de mascarillas en el contexto de la COVID-19. Orientaciones provisionales. 5 de junio del 2020. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/332657/WHO-2019-nCov-IPC_Masks-2020.4-spa.pdf
World Health Organization. Modes of transmission of virus causing covid-19 implications for IPC precaution recommendations. [Consulted June 28, 2021] Available in: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations
Azimi P, Keshavarz Z, Cedeno Laurent JG, Stephens B, Allen JG. Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc Natl Acad Sci U S A. 2021; 118 (8): e2015482118. doi: 10.1073/pnas.2015482118.
Morawska L, Tang JW, Bahnfleth W, Bluyssen PM, Boerstra A, Buonanno G et al. How can airborne transmission of COVID-19 indoors be minimised? Environ Int. 2020; 142: 105832. doi: 10.1016/j.envint.2020.105832.
Zhang X, Wang C. Prevention and control of COVID-19 pandemic on international cruise ships: the legal controversies. Healthcare (Basel). 2021; 9 (3): 281. doi: 10.3390/healthcare9030281.
WHO. Key planning recommendations for mass gatherings in the context of the current COVID-19 outbreak. Geneva: World Health Organization; 2020.
Centers for Diseases Control and Prevention. International Travel During COVID-19. Updated Aug 25, 2021. Available in: https://www.cdc.gov/coronavirus/2019-ncov/travelers/international-travel-during-covid19.html
Hu M, Lin H, Wang J, Xu C, Tatem AJ, Meng B et al. Risk of Coronavirus Disease 2019 transmission in train passengers: an epidemiological and modeling study. Clin Infect Dis. 2021; 72 (4): 604-610. doi: 10.1093/cid/ciaa1057.
Coppola P, De Fabiis F. Impacts of interpersonal distancing onboard trains during the COVID-19 emergency Eur Transp Res Rev. 2021; 13 (1): 13. doi: 10.1186/s12544-021-00474-6.
Shen Y, Li C, Dong H, Wang Z, Martinez L, Sun Z et al. Community outbreak investigation of SARS-CoV-2 transmission among bus riders in eastern China. JAMA Intern Med. 2020; 180 (12): 1665-1671. doi: 10.1001/jamainternmed.2020.5225.
World Health Organization. COVID-19 vaccine tracker and landscape. [Accessed June 27, 2021] Available in: https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines
Secretaría de Salud. Estatus regulatorio de las vacunas contra el virus SARS-CoV-2 en México. [Accesado el 27 de junio de 2021] Disponible en: http://vacunacovid.gob.mx/wordpress/informacion-de-la-vacuna/
Centers for Diseases Control and Prevention. Interim public health recommendations for fully vaccinated people. Updated May 28, 2021. [Accessed June 28, 2021] Available in: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/fully-vaccinated-guidance.html
Wake AD. The willingness to receive COVID-19 vaccine and its associated factors: "vaccination refusal could prolong the war of this pandemic" - a systematic review. Risk Manag Healthc Policy. 2021; 14: 2609-2623. doi: 10.2147/RMHP.S311074.
Secretaría de Salud. Certificado de vacunación contra la COVID-19. [Consultado el 03 de agosto de 2021] Disponible en: https://cvcovid.salud.gob.mx/
Jones NR, Qureshi ZU, Temple RJ, Larwood JPJ, Greenhalgh T, Bourouiba L. Two metres or one: what is the evidence for physical distancing in covid-19? BMJ. 2020; 370: m3223. doi: 10.1136/bmj.m3223.
Bahl P, Doolan C, de Silva C, Chughtai AA, Bourouiba L, MacIntyre CR. Airborne or droplet precautions for health workers treating COVID-19? J Infect Dis. 2020: jiaa189. doi: 10.1093/infdis/jiaa189.
Fears AC, Klimstra WB, Duprex P, Hartman A, Weaver SC, Plante KS et al. Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions. Emerg Infect Dis. 2020; 26 (9): 2168-2171. doi: 10.3201/eid2609.201806.
Doung-Ngern P, Suphanchaimat R, Panjangampatthana A, Janekrongtham C, Ruampoom D, Daochaeng N et al. Case-control study of use of personal protective measures and risk for SARS-CoV 2 infection, Thailand. Emerg Infect Dis. 2020; 26 (11): 2607-2616. doi: 10.3201/eid2611.203003.
Chu DK, Akl EA, Duda S, Solo K, Yaacoub S, Schünemann HJ; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020; 395 (10242): 1973-1987. doi: 10.1016/S0140-6736(20)31142-9.
Ramírez-Guerrero JA. La importancia del cubrebocas en la población general durante la pandemia de COVID-19. Med Int Méx. 2021; 37 (1): 94-109. doi: 10.24245/mim.v37i1.4790.
Jung H, Kim JK, Lee S, Lee J, Kim J, Tsai P et al. Comparison of filtration efficiency and pressure drop in anti-yellow sand masks, quarantine masks, medical masks, general masks, and handkerchiefs. Aerosol Air Qual Res [Internet]. 2014 [Accessed June 26, 2021]; 14 (3): 991-1002. Available in: https://doi.org/10.4209/aaqr.2013.06.0201
Jang JY, Kim SW. Evaluation of filtration performance efficiency of commercial cloth masks. J Environ Health Sci. 2015; 41 (3): 203-2015. Available in: https://doi.org/10.5668/JEHS.2015.41.3.203
Zhao M, Liao L, Xiao W, Yu X, Wang H, Wang Q et al. Household materials selection for homemade cloth face coverings and their filtration efficiency enhancement with triboelectric charging. Nano Lett. 2020; 20 (7): 5544-5552.
Lopez Leon S, Ayuzo C, Perelman C, Sepulveda R, Colunga-Pedraza IJ, Cuapio A et al. Cubrebocas en tiempos de pandemia, revisión histórica, científica y recomendaciones prácticas. Human Sciences. 2020. Disponible en: https://doi.org/10.1590/SciELOPreprints.1551
Konda A, Prakash A, Moss GA, Schmoldt M, Grant GD, Guha S. Aerosol filtration efficiency of common fabrics used in respiratory cloth masks. ACS Nano. 2020; 14 (5): 6339-6347. doi: 10.1021/acsnano.0c03252.
Perencevich EN, Diekema DJ, Edmond MB. Moving personal protective equipment into the community: face shields and containment of COVID-19. JAMA. 2020; 323 (22): 2252-2253.
Alzyood M, Jackson D, Aveyard H, Brooke J. COVID-19 reinforces the importance of handwashing. J Clin Nurs. 2020; 29 (15-16): 2760-2761. doi: 10.1111/jocn.15313.
Organización Mundial de la Salud. Manual técnico de referencia para la higiene de las manos. Dirigido a los profesionales sanitarios, a los formadores y a los observadores de las prácticas de higiene de las manos. [Consultado 28 de junio de 2021] Disponible en: https://apps.who.int/iris/bitstream/handle/10665/102537/WHO_IER_PSP_2009.02_spa.pdf;jsessionid=482A6C5D56CEA07ED9CA4FBC47594040?sequence=1
Organización Mundial de la Salud. Guía para la elaboración a nivel local: formulaciones recomendadas por la OMS para la desinfección de las manos. [Consultado 28 de junio 2021] Disponible en: https://www.who.int/gpsc/5may/tools/ES_PSP_GPSC1_GuiaParaLaElaboracionLocalWEB-2012.pdf