2021, Number 3
<< Back Next >>
Acta Med 2021; 19 (3)
Genomic characterization and variants of the SARS-CoV-2 virus
García LML, Bautista CP, Ángel AAH, Valadez GY, Vásquez MLM, Morales FJA, Cruz SAX, Chávez AJE, Mosqueda MEE, Gutiérrez BD, Vilchis HJ, Ramírez VIO, Perón MLÁ, García OZR, Cortázar MLA, Vite VX, Díaz RJB, Wong CRM
Language: Spanish
References: 73
Page: 445-456
PDF size: 330.55 Kb.
ABSTRACT
SARS-CoV-2 a positive sense single-stranded RNA virus, was detected for the first time in December 2019 in the city of Wuhan, China and causes the COVID-19 disease. The mutation rate in RNA viruses is extremely high, however SARS-CoV-2 has a proof reading mechanism, due to this, SARS-CoV-2 has a lower mutation rate. These mutations occur during the replication life cycle, the viral populations generated, dominate the spectrum of all the mutations generated, which gives them the ability to adapt quickly to changes, this populations are known as viral variants. When these variants appear small genetic differences are generated, sometimes, these small changes have no effect, but in some cases they give to the virus a huge tramsmission capacity, viral loads generation, greater lethality, allowing them to evade the immune response. In this review, the state of the art of the new viral variants of SARS-CoV-2 is described.
REFERENCES
Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol. 2005; 13 (6): 278-284.
Koonin EV, Senkevich TG, Dolja, V. V. The ancient virus world and evolution of cells. Biol Direct. 2006; 1: 29 .
Feschotte C, Gilbert C. Endogenous viruses: insights into viral evolution and impact on host biology. Nature Reviews Genetics. 2012; 13: 283-296.
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020; 382: 727-733.
Tang X, Wu C, Li X, Song Y, Yao X, Wu X et al. On the origin and continuing evolution of SARS-CoV-2. National Science Review. 2020; 7: 1012-1023.
Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: Summary of a report of 72 314 cases from the chinese center for disease control and prevention. JAMA. 2020; 323 (13): 1239-1242.
COVID Live Update: 160,502,246 Cases and 3,334,380 Deaths from the Coronavirus-Worldometer. Available in: https://www.worldometers.info/coronavirus/
Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nature Medicine. 2020; 26: 450-452.
Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, Liu W, Bi Y, Gao GF. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 2016; 24: 490-502.
Zhou P, Yang XL, Shi ZL. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579: 270-273.
Issa E, Merhi G, Panossian B, Salloum T, Tokajian S. SARS-CoV-2 and ORF3a: nonsynonymous mutations, functional domains, and viral pathogenesis. mSystems. 2020; 5 (3): e00266-20.
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579: 265-269.
Von Brunn A, Teepe C, Simpson JC, Pepperkok R, Friedel CC, Zimmer R et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One. 2007; 2: e459.
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. 2020; 395: 565-574.
Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020; doi: 10.1101/2020.12.21.20248640.
Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and bioinformatics analysis. Viruses. 2010; 2: 1804-1820.
Sanjuán R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010; 84 (19): 9733-9748.
Denison MR, Graham RL, Donaldson EF, Eckerle LD, Baric RS. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 2011; 8: 270-279.
GISAID-hCov19 Variants. Available in: https://www.gisaid.org/hcov19-variants/
Domingo E. Rapid evolution of viral RNA genomes. J Nutr. 1997; 127: 958S-961S.
Elena SF. RNA virus genetic robustness: possible causes and some consequences. Curr Opin Virol. 2012; 2 (5): 525-530.
Lauring AS, Frydman J, Andino R. The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol. 2013; 11 (5): 327-336.
Grubaugh ND, Petrone ME, Holmes EC. We shouldn't worry when a virus mutates during disease outbreaks. Nature Microbiology. 2020; 5: 529-530.
Peck KM, Lauring AS. Complexities of viral mutation rates. J Virol. 2018; 92 (14): e01031-17.
Fraser C, Lythgoe K, Leventhal GE, Shirreff G, Hollingsworth TD, Alizon S et al. Virulence and pathogenesis of HIV-1 infection: an evolutionary perspective. Science. 2014; 343: 1243727.
Rambaut A, Holmes EC, O'Toole A, Hill V, McCrone JT, Ruis C et al. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology. 2020; 5: 1403-1407.
Koyama T, Platt D, Parida, L. Variant analysis of SARS-CoV-2 genomes. Bull World Health Organ. 2020; 98 (7): 495-504.
Abram ME, Ferris AL, Shao W, Alvord WG, Hughes SH. Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol. 2010; 84 (19): 9864-9878.
Mercatelli D, Giorgi FM. Geographic and genomic distribution of SARS-CoV-2 mutations. front. Microbiol. 2020; 11.
Van Dorpa L, Acmana M, Richard D, Shawd LP, Ford CE, Ormond L et al. Emergence of genomic diversity and recurrent mutations in SARS-CoV-2. Infection, Genetics and Evolution. 2020; 83: 104351.
CDC. SARS-CoV-2 variant classifications and definitions. Centers for disease control and prevention. 2020. Available in: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance/variant-info.html
Organización Panamericana de la Salud. Actualización epidemiológica: variantes de SARS-CoV-2 en las Américas.
Weekly epidemiological update on COVID-19-27 April 2021. Available in: https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---27-april-2021
CDC. Cases, Data, and Surveillance. Centers for Disease Control and Prevention. 2020. Available in: https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/variant-surveillance.html
World Health Organization. Statement on the second meeting of the International Health Regulations (2005) Emergency Committee regarding the outbreak of novel coronavirus (2019-nCoV). (2020).
WHO|SARS-CoV-2 Variant-United Kingdom of Great Britain and Northern Ireland. WHO. Available in: http://www.who.int/csr/don/21-december-2020-sars-cov2-variant-united-kingdom/en/
Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. PNAS. 2020; 117: 9241-9243.
Unidad de inteligencia Epidemiológica y Sanitaria (UIES). Secretaría de prevención y promoción de la salud. Comunicado Técnico Diario Nuevo Coronavirus en el Mundo (COVID-19). 2020.
Taboada B, Vazquez-Perez JA, Muñoz-Medina JE, Ramos-Cervantes P, Escalera-Zamudio M, Boukadida C et al. Genomic analysis of early SARS-CoV-2 variants introduced in Mexico. J Virol. 2020; 94 (18): e01056-01020.
Leung K, Shum MH, Leung GM, Lam TT, Wu JT. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Euro Surveill. 2021; 26 (1): 2002106.
Galloway SE. Emergence of SARS-CoV-2 B.1.1.7 Lineage-United States, December 29, 2020-January 12, 2021. MMWR Morb Mortal Wkly Rep. 2021; 70 (3): 95-99.
O'Toole Áine. Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2-Preprint. Virological. 2021; Available in: https://virological.org/t/tracking-the-international-spread-of-sars-cov-2-lineages-b-1-1-7-and-b-1-351-501y-v2/592
Davies NG, Abbott S, Barnard RC, Jarvis CI, Kucharski AJ, Munday JD et al. Estimated transmissibility and impact of SARS-CoV-2 lineage B.1.1.7 in England. Science. 2021; 372: 9.
Emary KRW, Golubchik T, Aley PK, Ariani CV, Angus B, Bibi S et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. The Lancet. 2021; 397: 1351-1362.
Wu K, Werner AP, Moliva JI, Koch M, Choi A, Stewart-Jones GBE et al. mRNA-1273 vaccine induces neutralizing antibodies against spike mutants from global SARS-CoV-2 variants-Preprint. bioRxiv. 2021; doi: 10.1101/2021.01.25.427948.
Shen X, Tang H, McDanal C, Wagh K, Fischer W, Theiler J et al. SARS-CoV-2 variant B.1.1.7 is susceptible to neutralizing antibodies elicited by ancestral Spike vaccines-Preprint. bioRxiv [Preprint]. 2021; 29: 2021.01.27.428516. doi: 10.1101/2021.01.27.428516.
Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y et al. Antibody resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021; 593 (7857): 130-135.
Graham MS, Sudre CH, May A, Antonelli M, Murray B, Varsavsky T et al. Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study. The Lancet Public Health. 2021; 6: e335-e345.
Tegally H, Wilkinson E, Lessells RJ, Giandhari J, Pillay S, Msomi N et al. Sixteen novel lineages of SARS-CoV-2 in South Africa. Nature Medicine. 2021; 27: 440-446.
Makoni M. South Africa responds to new SARS-CoV-2 variant. Lancet. 2021; 397 (10271): 267.
GISAID-hCov19 Variants. Available in: https://www.gisaid.org/hcov19-variants/
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 2020; 581: 215-220.
Starr TN, Greaney AJ, Hilton SK, Ellis D, Crawford KHD, Dingens AS et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020; 182: 1295-1310.e20.
Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen B et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Nat Med. 2021; 27 (4): 622-625.
Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). 2021 Jul 17. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan–. PMID: 32150360.
Madhi SA, Baillie V, Cutland CL, Voysey M, Koen AL, Fairlie L et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant. N Engl J Med. 2021; 384 (20): 1885-1898.
Wang P, Casner RG, Nair MS, Wang M, Yu J, Cerutti G, Liu L et al. Increased Resistance of SARS-CoV-2 variant P.1 to antibody neutralization. bioRxiv. 2021; 2021.03.01.433466. doi: 10.1101/2021.03.01.433466.
Moyo-Gwete T, Madzivhandila M, Makhado Z, Ayres F, Mhlanga D, Oosthuysen B et al. SARS-CoV-2 501Y.V2 (B.1.351) elicits cross-reactive neutralizing antibodies. bioRxiv [Preprint]. 2021: 2021.03.06.434193. doi: 10.1101/2021.03.06.434193. Update in: N Engl J Med. 2021; 384 (22): 2161-2163. Available in: http://biorxiv.org/lookup/doi/10.1101/2021.03.06.434193 doi: 10.1101/2021.03.06.434193.
Sabino EC, Buss LF, Carvalho MPS, Prete CA Jr, Crispim MAE, Fraiji NA et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet. 2021; 397: 452-455.
Firestone MJ. First identified cases of SARS-CoV-2 Variant P.1 in the United States-Minnesota, January 2021. MMWR Morb Mortal Wkly Rep. 2021; 70: 346-347.
Faria NR, Morales CI, Candido D, Moyses FLA, Andrade PS, Coletti TM et al. Genomic characterisation of an emergent SARS-CoV-2 lineage in Manaus: preliminary findings-SARS-CoV-2 coronavirus/nCoV-2019 Genomic Epidemiology-Preprint. Virological. 2021; Available in: https://virological.org/t/genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-manaus-preliminary-findings/586
Hoffmann M, Arora P, Grob R, Seidel A, Hornich BF, Hahn AS et al. SARS-CoV-2 variants B.1.351 and P.1 escape from neutralizing antibodies. Cell. 2021; 184: 2384-2393.e12.
Cherian S, Potdar V, Jadhav S, Yadav P, Gupta N, Das M et al. Convergent evolution of SARS-CoV-2 spike mutations, L452R, E484Q and P681R, in the second wave of COVID-19 in Maharashtra, India-Preprint. bioRxiv. 2021; 2021.04.22.440932, doi: 10.1101/2021.04.22.440932.
Yadav PD, Sapkal GN, Abraham P, Ella R, Deshpande G, Patil DY, Nyayanit DA et al. Neutralization of variant under investigation B.1.617 with sera of BBV152 vaccinees-Preprint. bioRxiv. 2021; 2021.04.23.441101, doi: 10.1101/2021.04.23.441101.
FDA. Fact sheet for health care providers emergency use authorization of bamlanivimab and etesevimab 02092021. Available in: https://www.fda.gov/media/145802/download.
FDA. Fact sheet for health care providers emergency use authorizatioN (EUA) of REGEN-COVTM (casirivimab with imdevimab). Available in: https://www.fda.gov/media/145611/download
Pearson CAB, Russell TW, Davies N, Kucharski AJ, CMMID COVID-19 working group, W John Edmunds & Rosalind M Eggo. Estimates of severity and transmissibility of novel SARS-CoV-2 variant 501Y.V2 in South Africa. CMMID Repository. 2021. Available in: https://cmmid.github.io/topics/covid19/sa-novel-variant.html
Deng X, Garcia-Knight MA, Khalid MM, Servellita V, Wang C, Morris MK et al. Transmission, infectivity, and antibody neutralization of an emerging SARS-CoV-2 variant in California carrying a L452R spike protein mutation. medRxiv. 2021; doi: 10.1101/2021.03.07.21252647.
Greaney AJ, Loes AN, Crawford KHD, Starr TN, Malone KD, Chu HY et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor-binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host Microbe. 2021; 29: 463-476.e6.
New and Emerging Respiratory Virus Threats Advisory Group. GOV.UK. Available in: https://www.gov.uk/government/groups/new-and-emerging-respiratory-virus-threats-advisory-group.
Edara VV, Floyd K, Lai L, Gardner M, Hudson W, Piantadosi A et al. Infection and mRNA-1273 vaccine antibodies neutralize SARS-CoV-2 UK variant. medRxiv. 2021; doi: 10.1101/2021.02.02.21250799.
Collier DA, De Marco A, Ferreira IAT, Meng B, Datir RP, Walls AC et al. Sensitivity of SARS-CoV-2 B.1.1.7 to mRNA vaccine-elicited antibodies. Nature. 2021; 593: 136-141.
Inc N. Novavax COVID-19 Vaccine Demonstrates 89.3% Efficacy in UK Phase 3 Trial. GlobeNewswire News Room. 2021. Available in: https://www.globenewswire.com/news-release/2021/01/28/2166253/14446/en/Novavax-COVID-19-Vaccine-Demonstrates-89-3-Efficacy-in-UK-Phase-3-Trial.html