2020, Number 2
<< Back Next >>
Revista Cubana de Informática Médica 2020; 12 (2)
Segmentation and processing techniques for the detection of Renal Carcinomas in Abdominal Tomography images
Orellana GA, García PLM
Language: Spanish
References: 25
Page:
PDF size: 477.68 Kb.
ABSTRACT
One of the most recognized campaigns in the world is the fight against cancer, the kidney system being one of the most affected by this pathology. Renal cell carcinoma (RCC), the most common form of kidney cancer in adults, represents the sixth leading cause of cancer death. Due to the increased use of diagnostic imaging techniques, kidney injuries can be diagnosed incidentally in approximately 50% of cases. Cuba is committed to the use of technology in health and a system for the storage, transmission and display of medical images (XAVIA PACS) has been developed at the University of Computer Sciences (UCI), which is implanted in several hospitals of the country, but it does not have alternatives to detect RCC in tomographic images, slowing down the diagnosis, which translates into fewer possibilities for the patient.
The objective of this research is to carry out an analysis on the main segmentation and processing techniques for the detection of renal carcinomas in abdominal tomography images, which provides development teams with the theoretical basis necessary to face the problem in question. For this, a documentary analysis was carried out on works related to the subject and that provide solutions to the problem. Algorithms and effective computational techniques for the segmentation and processing of abdominal images were studied. As a result of the research, the most suitable algorithms for the XAVIA PACS system and the Cuban medical context were obtained.
REFERENCES
De Guevara H. Imágenes en oncología: generalidades y aplicaciones. Revista Médica Clínica Las Condes. 2013 Jul 1;24(4):571-7.
Trigo JM, Bellmunt J. Estrategias actuales en el tratamiento del carcinoma de células renales: fármacos dirigidos a dianas moleculares. Medicina Clínica. 2008 Mar 1;130(10):380-92.
Linehan WM, Zbar B. Focus on kidney cancer. Cancer cell. 2004 Sep 1;6(3):223-8.
Motzer RJ, Agarwal N, Beard C, Bolger GB, Boston B, Carducci MA, Choueiri TK, Figlin RA, Fishman M, Hancock SL, Hudes GR. Kidney cancer. Journal of the National Comprehensive Cancer Network. 2009 Jun 1;7(6):618-30.
5 Pascau J. DICOM Almacenamiento y comunicación de imágenes médicas. Hospital General Universitario Gregorio Marañón, Digital Imaging and Communication in Medicine (DICOM).
Grupo PA. Estándar y protocolo de imágenes médicas DICOM. Bilbao: Universidad de Deusto. 2005.
Orellana A, Pérez DA, Larrea OA. Analysis of Hospital Processes with Process Mining Techniques. Studies in health technology and informatics. 2015;216:310-4.
Orellana AO, Ramirez YE, Larrea OU. Process Mining in Healthcare: Analysis and Modeling of Processes in the Emergency Area. IEEE Latin America Transactions. 2015 May 22;13(5):1612-8.
Orellana A, Armenteros OU, Ramirez YE, Alfonso DP. Inductive visual miner plugin customization for the detection of eventualities in the processes of a hospital information system. IEEE Latin America Transactions. 2016 Jun 2;14(4):1930-6.
Orellana A, Senti VE, Alfonso DP. MVD: A Model for the Detection of Variability in Hospital Processes Using Process Mining. IEEE Latin America Transactions. 2018 May 14;16(3):966-74.
Orellana A, Dominguez LC, Martinez AV. Analysis of hospital processes from the time perspective using process mining. IEEE Latin America Transactions. 2018 Aug 22;16(6):1741-8.
Rivero A, Rivera Y, Borges Y, Naranjo Y. Algoritmo para la identificación de nódulos pulmonares solitarios en imágenes de tomografía de tórax. Revista Cubana de Informática Médica. 2015 Jun;7(1):73-88.
Ali AH, Hasan EH, Nazar A. Analysis and classification of kidney images using watershed segmentation and texture properties. IJCSMC. 2016;5:592-604.
Song H, Kang W, Zhang Q, Wang S. Kidney segmentation in CT sequences using SKFCM and improved GrowCut algorithm. BMC systems biology. 2015 Dec 1;9(S5):S5.
Mahmood FH, Mahmood NA, Ismaeel AR. Automated Methods to Segment Kidneys and Detect Tumors Using CT Images. Iraqi Journal of Science. 2017;58(3B):1555-64.
Myint MM, Myint T. Effective kidney segmentation using gradient based approach in abdominal CT images. InInternational conference on future computational technologies ICFCT 2015 Mar (pp. 130-5).
Mredhula L, Dorairangaswamy MA. Detection and Classification of tumors in CT images. Indian Journal of Computer Science and Engineering (IJCSE). 2015;6(2).
Natarajan P, Singh BP, Dwivedi S, Nancy S. Kidney segmentation in CT-scan image. International Journal of Scientific & Engineering Research. 2013 Jun;4(6):221-5.
Dougherty ER, Lotufo RA. Hands-on morphological image processing. SPIE press; 2003.
Gonzales RC, Woods RE. Digital image processing. Pearson Prentice Hall, New Jersey: s.n.
Cabanilles Mengual PA. Segmentación Automática del Cerebro mediante Técnicas de Tratamiento de Imagen (Doctoral dissertation).
Bereciartua A. Desarrollo de algoritmos de procesamiento de imagen avanzado para interpretación de imágenes médicas (Doctoral dissertation, UPV-EHU).
Rodríguez Gutierrez Y. Comparación de algoritmos de segmentación sobre imágenes de hematología celular (Doctoral dissertation, Universidad Central" Marta Abreu" de Las Villas).
Mustafa ID, Hassan MA, Mawia A. A comparison between different segmentation techniques used in medical imaging. American journal of biomedical engineering. 2016;6(2):59-69.
Beucher S. The watershed transformation applied to image segmentation. Scanning microscopy-supplement-. 1992 Sep:299-.