2020, Number 2
<< Back Next >>
Rev Cubana Hematol Inmunol Hemoter 2020; 36 (2)
A rare case of acute myeloid leukemia with coexistence of NPM1-A mutation and chromosome 16 inversion
Ruiz MV, Díaz ACA, Amor VAM, Fernández ML, Garrote SH, González GS
Language: Spanish
References: 26
Page: 1-9
PDF size: 308.80 Kb.
ABSTRACT
Introduction:
Acute myeloid leukemia (AML) is a heterogeneous group of clonal disorders with great variability in terms of pathogenesis, morphological, genetic and immunophenotypic characteristics. NPM1 mutations represent one of the most common in AML and are associated with favorable clinical response. By cytogenetics, chromosome 16 inversion defines, with a favorable prognosis, the core‐binding factor for the subgroup of AMLs
Objective:
To describe a AML case in which the molecular study of the NPM1 gene and the chromosome 16 inversion were positive.
Clinical case:
At the molecular level, fluorescent in situ hybridization was positive for chromosome 16 inversion and, by molecular biology, it was positive for both chromosome 16 inversion and for the NPM1-A gene, elements with a low frequency of appearance. The patient was administered a non-intensive combination as part of a chemotherapy regimen to improve her clinical status. After initial clinical improvement, the patient began with complications and died.
Conclusions:
The coexistence of these two mutations is very rare in patients with AML. Despite presenting a good prognosis, the patient died after a few days of treatment.
REFERENCES
Burnett AK, Grimwade D. Acute Myeloid Leukaemia. In: Hoffbrand AV, Higgs DR, Keeling DM, Mehta AB, eds. Postgraduate Haematology. 7thed. Oxford: Wiley; 2015. doi:10.1002/9781118853771.ch20]
Döhner K, Döhner H. Molecular characterization of acute myeloid leukemia. Haematologic. 2008;93:976-82.]
Balatzenko G, Spassov B, Stoyanov N, Ganeva P, Dikov T, Konstantinov S, et al. NPM1 Gene Type A Mutation in Bulgarian Adults with Acute Myeloid Leukemia: A Single-Institution Study. Turk J Hematol. 2014;31:40-8.]
Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-21.]
Dohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-47.]
Döhner H. Implication of the molecular characterization of acute myeloid leukemia. Hematology Am Soc Hematol Educ Program 2007. Blood. 2017;129(4):424-47.]
Lagunas-Rangel FA, Chávez-Valencia V, Gómez-Guijosa MÁ, Cortes-Penagos C. Acute Myeloid Leukemia-Genetic Alterations and Their Clinical Prognosis. Int J Hematol Oncol Stem Cell Res. 2017;11(4):328-39.]
Falini B, Martelli MP, Bolli N, Sportoletti P, Liso A, Tiacci E, et al. Acute myeloid leukemia with mutated nucleophosmin (NPM1): Is it a distinct entity? Blood. 2011;117(4):1109-20.]
Schnittger S, Bacher U, Kern W, Alpermann T, Haferlach C, Haferlach T. Prognostic impact of FLT3-ITD load in NPM1 mutated acute myeloid leukemia. Leukemia. 2011;25(8):1297-1304.]
Mullighan CG, Kennedy A, Zhou X, Radtke I, Phillips LA, Shurtleff SA, et al. Pediatric acute myeloid leukemia with NPM1 mutations is characterized by a gene expression profile with dysregulated HOX gene expression distinct from MLL-rearranged leukemias. Leukemia. 2007;21:2000-0-9.]
Dohner K, Schlenk RF, Habdank M, Scholl C, Rücker FG, Corbacioglu A, et al. Mutant nucleophosmin (NPM1) predicts favorable prognosis in younger adults with acute myeloid leukemia and normal cytogenetics: Interaction with other gene mutations. Blood. 2005;106:3740-6.]
Qi J, Singh S, Hua WK, Cai Q, Chao SW, Li L, et al. HDAC8 inhibition specifically targets Inv(16) acute myeloid leukemic stem cells by restoring p53 acetylation. Cell Stem Cell. 2015;17:597-610.]
Liu Y, He P, Liu F, Shi L, Zhu H, Zhao J, et al. Prognostic significance of NPM1 mutations in acute myeloid leukemia: A meta-analysis. Mol Clin Oncol. 2014;2(2):275-81.]
Freeman SD, Hills RK, Virgo P, Khan N, Couzens S, Dillon R, et al. Measurable residual disease at induction redefines partial response in acute myeloid leukemia and stratifies outcomes in patients at standard risk without NPM1 mutations. J Clin Oncol. 2018;36:1486-97.]
Byrd JC, Mro´zek K, Dodge RK, Carroll AJ, Edwards CG, Arthur DC, et al. Pretreatment cytogenetic abnormalities are predictive of induction success, cumulative incidence of relapse, and overall survival in adult patients with de novo acute myeloid leukemia: results from Cancer and Leukemia Group B (CALGB 8461). Blood. 2002;100(13):4325-36.]
Dohner H, Estey EH, Amadori S, Appelbaum FR, Büchner T, Burnett AK, et al. Diagnosis and management of acute myeloid leukemia in adults: recommendations from an international expert panel. Behalf European Leukemia Net. Blood. 2010;115(3):453-74.]
Liu P, Tarle SA, Hajra A, Claxton DF, Marlton P, Freedman M, et al. Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science. 1993;261(5124):1041-4.]
Metzeler KH, Bloomfield CD. Clinical relevance of RUNX1 and CBFB alterations in acute myeloid leukemia and other hematological disorders. Adv Exp Med Biol. 2017;962:175-99.]
Duployez N, Marceau-Renaut A, Boissel N, Petit A, Bucci M, Geffroy S, et al. Comprehensive mutational profiling of core binding factor acute myeloid leukemia. Blood. 2016;127:2451-9.]
Shigesada, K., van de Sluis. B, Liu. P. Mechanism of leukemogenesis by the inv(16) chimeric gene CBFB/PEBP2B-MHY11. Oncogene. 2004;23:4297-07]
Estey E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Hematology. 2018;93(10):1267-91.]
Falini B, Mecucci C, Saglio G, Lo Coco F, Diverio D, Brown P et al. NPM1 mutations and cytoplasmic nucleophosmin are mutually exclusive of recurrent genetic abnormalities: a comparative analysis of 2562 patients with acute myeloid leukemia. Haematologic. 2008 Mar;93(3):439-42]
Tsai CH, Hou HA, Tang JL, Liu CY, Lin CC, Chou WC et al. Genetic alterations and their clinical implications in older patients with acute myeloid leukemia. Leukemia. 2016;30(7):1485-92]
Ostronoff F, Othus M, Lazenby M, Estey E, Appelbaum FR, Evans A et al. Prognostic significance of NPM1 mutations in the absence of FLT3-internal tandem duplication in older patients with acute myeloid leukemia: a SWOG and UK National Cancer Research Institute/Medical Research Council report. J Clin Oncol. 2015;33(10):1157-64]
Boissel N, Leroy H, Brethon B, Philippe N, de Botton S, Auvrignon A et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20(6):965-70]
Cairoli R, Beghini A, Ripamonti CB, Grillo G, Nadali G, Di Bona E, et al. Prevalence and prognostic impact of KIT mutations in acute myeloid leukemia with Inv(16): a retrospective study. Blood. 2007;110(11):1021-2]