2021, Number 4
<< Back Next >>
Med Int Mex 2021; 37 (4)
Autonomous activity behavior and its relationship with obesity
Espinoza-Salinas A, González-Jurado J, Burdiles-Álvarez A, Arenas-Sánchez G, Zafra-Santos E
Language: Spanish
References: 43
Page: 572-579
PDF size: 261.20 Kb.
ABSTRACT
Obesity is a growing problem all around the world associated to multiple comorbidities
and rising mortality. While efforts to comprehend physiological mechanisms involved
in this disease have helped to better understand its prevalence and sequels, exact
compromised mechanisms involved in metabolic changes are not fully understood. In
this context, sympathetic nervous system hyperactivation counts on an important role
on obesity, which could be related to the sequential development of type 2 diabetes
mellitus and cardiovascular disease. In fact, commonly recommended strategies for
obesity intervention, as diet and exercise aiming to weight loss, secondary associates
to sympathetic inhibition. Thus, takes special relevance describe the exact mechanisms
which link obesity and sympathetic nervous system activation. Researchers have proposed
several theories to link these phenomena, until now, partially known.
REFERENCES
Hall M, do Carmo JM, da Silva AA, Juncos LA, et al. Obesity, hypertension, and chronic kidney disease. Int J Nephrol Renovasc Dis 2014; 18 (7): 75-88. doi. 10.2147/IJNRD.S39739.
Mancia G, Bousquet P, Elghozi JL, Esler M, et al. The sympatic nervous system and the metabolic syndrome. J Hytertens 2007; 25: 909-20. doi. 10.1097/HJH.0b013e328048d00.
Olatz I, de Luis D, Sajoux I, Domingo JC, et al. Inflamación y obesidad (lipoinflamación). Nutr Hosp 2015: 2352-2358. doi. 10.3305/nh.2015.31.6.8829.
Windham B, Fumagalli S, Ble A, Sollers J, et al. The relationship between heart rate variability and adiposity differs for central and overall adiposity. J Obes 2012; 2012: 149516. doi. 10.1155/2012/149516.
Straznicky N, Grima M, Sari C, Eikelis N, et al. A randomized controlled trial of the effects of pioglitazone treatment on sympathetic nervous system activity and cardiovascular function in obese subjects with metabolic syndrome. J Clin Endocrinol Metabol 2014; 99 (9): E1701-7. doi. 10.1210/ jc.2014-1976.
Kuller L, Eichner J, Orchard T, Grandits G, et al. The relation between serum albumin levels and risk of coronary heart disease in the Multiple Risk Factor Intervention Trial. Am J Epidemiol 1991; 134: 1266-77. doi. 10.1093/oxfordjournals. aje.a116030.
Sekine M, Izumi I, Yamagami T, Kagamimori S. Obesity and cardiac autonomic nerve activity in healthy children: Results of the Toyama Birth Cohort Study. Environ Health Prev Med 2001; 6: 149-153. doi. 10.1007/BF02897962.
Marques L, Pastre C, Freitas I, Fernandes M. Índices geométricos de variabilidad de la frecuencia cardiaca en niños obesos y eutróficos. Arquivos Brasileiros de Cardiología 2010; 95: 35-40.
Álvarez G, Stacy D, Beske T, Ballar D, et al. Sympathetic neural activation in visceral obesity. Circulation 2002; 106: 2533-2536. doi. 10.1161/01.cir.0000041244.79165.25.
Breno-Quintella F, do Prado W, dos Santos-Tenório TR. Heart rate variability and its relationship with central and general obesity in obese. Einstein 2013; 113: 285-90. doi. 10.1590/s1679-45082013000300005.
Singh N, Moneghetti KJ, Christle JW, Hadley D, et al. Heart rate variability: an old metric with new meaning in the era of using health technologies for health and exercise training guidance. Part One: Physiology and Methods. Arrhythm Electrophysiol Rev 2018; 193-198. doi. 10.15420/ aer.2018.27.2.
Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: standards of measurement, physiological interpretation and clinical use. Circulation 1996; 935: 1043-65.
Schlaich M, Straznicky N, Lambert E, Lambert G, et al. Metabolic syndrome: a sympathetic disease? Lancet Diabetes Endocrinol 2015; 48-157. doi. 10.1016/S2213- 8587(14)70033-6.
Kim JA, Montagnani M, Koh KK, Quon MJ. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006 Apr 18; 113 (15): 1888-904. doi. 10.1161/CIRCULATIONAHA.105.563213.
Muscelli E, Emdin M, Natali A, Pratali L, et al. Autonomic and hemodynamic responses to insulin in lean and obese humans. J Clin Endocrinol Metab 1998; 2084-90. doi. 10.1210/jcem.83.6.4878.
Leosco D, Parisi V, Femminella GD, Formisano R, et al. Effects of exercise training on cardiovascular adrenergic system. Front Physiol 2013; 4: 348. doi. 10.3389/ fphys.2013.00348.
Zhao K, Ao Y, Harper RM, Go VL, et al. Food-intake dysregulation in type 2 diabetic Goto-Kakizaki rats: hypothesized role of dysfunctional brainstem thyrotropin-releasing hormone and impaired vagal output. Neuroscience 2013; 247: 43-54. doi. 10.1016/j.neuroscience.2013.05.017.
Williams KW, Smith BN. Rapid inhibition of neural excitability in the nucleus tractus solitarii by leptin: implications for ingestive behaviour. J Physiol 2006; 395-412. doi. 10.1113/ jphysiol.2006.106336.
Emdin M, Gastaldelli A, Muscelli E, Macerata A, et al. Hyperinsulinemia and autonomic nervous system dysfunction in obesity: Effects of weight loss. Circulation 2001; 103: 513-9. doi. 10.1161/01.cir.103.4.513.
Stuckey MI, Kiviniemi A, Gill DP, Shoemaker JK, et al. Associations between heart rate variability, metabolic syndrome risk factors, and insulin resistance. Appl Physiol Nutr Metab 2015; 407: 734-40. doi. 10.1139/apnm-2014-0528.
Svensson MK, Lindmark S, Wiklund U, Rask P, et al. Alterations in heart rate variability during everyday life are linked to insulin resistance. A role of dominating sympathetic over parasympathetic nerve activity? Cardiovasc Diabetol 2016; 15: 91. doi. 10.1186/s12933-016-0411-8.
Lambert EA, Teede H, Sari CI, Jona E, et al. Sympathetic activation and endothelial dysfunction in polycystic ovary syndrome are not explained by either obesity or insulin resistance. Clin Endocrinol (Oxf) 2015; 83 (6): 812-9. doi. 10.1111/cen.12803.
Saito I, Maruyama K, Eguchi E, Kato T, et al. Low heart rate variability and sympathetic dominance modifies the association between insulin resistance and metabolic syndrome-The Toon Health Study. Circulation 2017; 1447- 1453. doi. 10.1253/circj.CJ-17-0192.
Kalil GZ, Haynes WG. Sympathetic nervous system in obesity-related hypertension: Mechanisms and clinical implications. Hypertens Res 2012; 35, 416. doi. 10.1038/ hr.2011.173.
Suárez-Carmona W, Sánchez-Oliver AJ, González-Jurado JA. Fisiopatología de la obesidad: Perspectiva actual. Rev Chil Nutr 2017; 226-233. http://dx.doi.org/10.4067/s0717- 75182017000300226.
Russo L, Lumeng CN. Properties and functions of adipose tissue macrophages in obesity. Immunology 2018; 155: 407-417. doi. 10.1111/imm.13002.
Heilbronn LK, Campbell LV. Adipose tissue macrophages, low grade inflammation and insulin resistance in human obesity. Curr Pharm Des 2008; 1225-1230. doi. 10.2174/138161208784246153.
Wu H, Ballantyne CM. Skeletal muscle inflammation and insulin resistance in obesity. J Clin Invest 2017; 127: 43-54. doi. 10.1172/JCI88880.
Hall JE, Jones DW, Kuo JJ, da Silva A, et al. Impact of the obesity epidemic on hypertension and renal disease. Curr Hypertens Rep 2003; 5: 386-92. doi. 10.1007/s11906- 003-0084-z.
Van De Wielle R, Michels N. Longitudinal associations of leptin and adiponectin with heart rate variability in children. Front Physiol 2017; 8: 498. doi. 10.3389/ fphys.2017.00498.
Huby AC, Otvos L, de Chantemèle B. Leptin induces hypertension and endothelial dysfunction via aldosteronedependent mechanisms in obese female mice. Hypertension 2016; 675: 1020-1028. doi. 10.1161/HYPERTENSIONAHA. 115.06642.
Tanida M, Yamamoto N, Morgan DA, Kurata Y, et al. Leptin receptor signaling in the hypothalamus regulates hepatic autonomic nerve activity via phosphatidylinositol l3-kinase and AMP-activated protein linase. J Neurosci 2015; 352: 474-484. doi. 10.1523/JNEUROSCI.1828-14.2015.
Bell B, Kamal R. Leptin as a mediator of obesity-induced hypertension. Curr Obes Rep 2016; 54: 397-404. doi. 10.1007/s13679-016-0231-x.
Shi Z, Li B, Brooks VL. Role of the paraventricular nucleus of the hypothalamus in the sympathoexcitatory effects of leptin. Hypertension 2015; 1034-1041. doi. 10.1161/ HYPERTENSIONAHA.115.06017.
Alvarez GE, Beske SD, Ballard TP, Davy KP. Sympathetic neural activation in visceral obesity. Circulation 2002; 106: 2533-36. doi. 10.1161/01.cir.0000041244.79165.25.
Zubcevic J, Waki H, Raizada MK, Paton JF. Autonomicimmune- vascular interaction: an emerging concept for neurogenic hypertension. Hypertension 2011; 57: 1026- 33.18. doi. 10.1161/HYPERTENSIONAHA.111.169748.
Harrison DG, Guzik TJ, Lob HE. Inflammation, immunity, and hypertension. Hypertension 2011; 57: 132-40. doi. 10.1161/HYPERTENSIONAHA.110.163576.
Maison P, Byrne CD, Hales CN, Wareham NJ. Hypertension and its treatment influence changes in fasting non-esterified fatty acid concentrations: a link between the sympathetic nervous system and the metabolic syndrome? Metabolism 2000; 49: 81-87. doi. 10.1016/ s0026-0495(00)90788-1.
Florian JP, Pawelczyk JA. Non-esterified fatty acids increase arterial pressure via central sympathetic activation in humans. Clin Sci Lond 2010; 118: 61-69. doi. 10.1042/ CS20090063.
Grekin RJ, Ngarmukos CO, Williams DM, Supiano MA. Renal norepinephrine spillover during infusion of nonesterified fatty acids. Am J Hypertens 2005; 18: 422-26. doi. 10.1016/j.amjhyper.2004.10.013.
Vicennati V, Pasqui F, Cavazza C, Pagoto U, et al. Stress-related development of obesity and cortisol in women. Obesity Silver Spring 2009; 179: 1678-83. doi. 10.1038/oby.2009.76.
Brunner EJ, Chandola T, Marmot MG. Prospective effect of job strain on general and central obesity in the Whitehall II Study. Am J Epidemiol 2007; 165: 828-37. doi. 10.1093/ aje/kwk058.
Heraclides A, Chandola T, Witte DR, Brunner EJ. Psychosocial stress at work doubles the risk of type 2 diabetes in middle-aged women: evidence from the Whitehall II study. Diabetes Care 2009; 32: 2230-35. doi. 10.2337/dc09-0132.