2021, Number 2
<< Back Next >>
An Med Asoc Med Hosp ABC 2021; 66 (2)
Biomechanical analysis of two osteosynthesis constructs in long oblique fractures of first metatarsal
Castillo-Vázquez FG, Hermida OJC, Hermida GLF
Language: Spanish
References: 45
Page: 97-103
PDF size: 305.15 Kb.
ABSTRACT
Introduction: The first metatarsal is a fundamental anatomical structure for bipedestation and walking so displaced fractures can lead to pain, plantar ulcers, functional limitation, and decreased quality of life of the individual. Therefore knowing the ideal fixation of it can ensure a better prognosis for patients with this lesion.
Objective: Because the literature equates the use of compression screws with the use of a compression screw plus protection plate in its treatment and because no biomechanical study was found to support this claim, we decided to perform biomechanical tests to corroborate or refute that theory.
Material and methods: Pork metatarsals were used in which a laboratory fracture was simulated, and which were fixed with the two osteosynthesis techniques mentioned above to define the biomechanical equality of them. Biomechanical testing was performed on the two constructs described above undergoing a force of 250 N per 300,000 cycles.
Results: Our study demonstrates the superiority of the construct of two screws by biomechanical tests a less loss of rigidity of the same during the load cycles.
Conclusions: Compression screws are biomechanically superior to a screw plus a protection plate in first metatarsal long oblique fractures.
REFERENCES
Kelikian A, Sarrafian S. Sarrafian's anatomy of the foot and ankle. Descriptive, topographic, functional. 3rd edition. Philadelphia: Wolters Kluwer; 2011.
Saltzman C, Anderson R, Coughlin M. Mann's surgery of the foot and ankle. 9th edition. Philadelphia: Elsevier Saunders; 2014.
Buckley R, Moran C, Apivatthakakul T, AO Foundation. AO principles of fracture management. 3rd edition. Switzerland. Davos Platz, Switzerland: AO Foundation, Stuttgart, Germany; New York, NY: Distribution by Georg Thieme Verlag; 2017.
Rammelt S. Swords M, Dhillon M, Sands A. Manual of fracture management. Foot and ankle. Switzerland: AO Foundation; 2020.
Buddecke DE, Polk MA, Barp EA. Metatarsal fractures. Clin Podiatr Med Surg. 2010; 27 (4): 601-624.
Boutefnouchet T, Budair B, Backshayesh P, Ali SA. Metatarsal fractures: a review and current concepts. Trauma. 2014; 16 (3): 147-163.
Petrisor BA, Ekrol I, Court-Brown C. The epidemiology of metatarsal fractures. Foot Ankle Int. 2006; 27 (3): 172-174.
Sarpong NO, Swindell HW, Trupia EP, Vosseller J. Metatarsal fractures. Foot Ankle Orthop. 2018; 3 (3). Available in: https://doi.org/10.1177/2473011418775094
Robinson A, Brodsky J, Negrine J. Core topics in foot and ankle surgery. United Kingdom: Cambridge University Press; 2018.
Burr DB, Milgrom C. Musculoskeletal fatigue and stress fractures. Florida: CRC Press; 2001.
Chatzistergos PE, Karaoglanis GC, Kourkoulis SK, Tyllianakis M, Stamatis ED. Supplementary medial locking plate fixation of Ludloff osteotomy versus sole lag screw fixation: a biomechanical evaluation. Clin Biomech (Bristol, Avon). 2017; 47: 66-72.
Kim JS, Cho HK, Young KW, Kim JS, Lee KT. Biomechanical comparison study of three fixation methods for proximal chevron osteotomy of the first metatarsal in hallux valgus. Clin Orthop Surg. 2017; 9 (4): 514-520.
Hofstaetter SG, Glisson RR, Alitz CJ, Trnka HJ, Easley ME. Biomechanical comparison of screws and plates for hallux valgus opening-wedge and Ludloff osteotomies. Clin Biomech (Bristol, Avon). 2008; 23 (1): 101-108.
Massengill JB, Alexander H, Langrana N, Mylod A. A phalangeal fracture model--quantitative analysis of rigidity and failure. J Hand Surg Am. 1982; 7 (3): 264-270.
Yu X, Pang QJ, Chen XJ. The biomechanical study of the influence to the forefoot plantar pressure of the first tarsometatarsal joint fracture-dislocation fixed by three different implants. Pak J Med Sci. 2017; 33 (1): 146-150.
Ochman S, Doht S, Paletta J, Langer M, Raschke MJ, Meffert RH. Comparison between locking and non-locking plates for fixation of metacarpal fractures in an animal model. J Hand Surg Am. 2010; 35 (4): 597-603.
Popoff I, Negrine JP, Zecovic M, Svehla M, Walsh WR. The effect of screw type on the biomechanical properties of SCARF and crescentic osteotomies of the first metatarsal. J Foot Ankle Surg. 2003; 42 (3): 161-164.
Smith K, Lidtke RH, Oliver NG, Maker JM. Mechanical comparison of cortical screw fixation versus locking plate fixation in first metatarsal base osteotomy. J Foot Ankle Surg. 2014; 53 (5): 529-533.
Stamatis ED, Navid DO, Parks BG, Myerson MS. Strength of fixation of Ludloff metatarsal osteotomy utilizing three different types of Kirschner wires: a biomechanical study. Foot Ankle Int. 2003; 24 (10): 805-811.
Tsilikas SP, Stamatis ED, Kourkoulis SK, Mitousoudis AS, Chatzistergos PE, Papagelopoulos PJ. Mechanical comparison of two types of fixation for ludloff oblique first metatarsal osteotomy. J Foot Ankle Surg. 2011; 50 (6): 699-702.
Unal AM, Baran O, Uzun B, Turan AC. Comparison of screw-fixation stabilities of first metatarsal shaft osteotomies: a biomechanical study. Acta Orthop Traumatol Turc. 2010; 44 (1): 70-75.
Waris E, Ashammakhi N, Raatikainen T, Tormala P, Santavirta S, Konttinen YT. Self-reinforced bioabsorbable versus metallic fixation systems for metacarpal and phalangeal fractures: a biomechanical study. J Hand Surg Am. 2002; 27 (5): 902-909.
Trnka HJ, Parks BG, Ivanic G, Chu IT, Easley ME, Schon LC et al. Six first metatarsal shaft osteotomies: mechanical and immobilization comparisons. Clin Orthop Relat Res. 2000; (381): 256-265.
Thorup VM, Togersen FA, Jorgensen B, Jensen BR. Biomechanical gait analysis of pigs walking on solid concrete floor. Animal. 2007; 1 (5): 708-715.
Decker S, Reifenrath J, Omar M, Krettek C, Muller CW. Non-osteotomy and osteotomy large animal fracture models in orthopedic trauma research. Orthop Rev (Pavia). 2014; 6 (4): 5575.
Reichert JC, Saifzadeh S, Wullschleger ME, Epari DR, Schütz MA, Duda GN et al. The challenge of establishing preclinical models for segmental bone defect research. Biomaterials. 2009; 30 (12): 2149-2163.
Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cell Mater. 2007; 13: 1-10.
Wancket LM. Animal models for evaluation of bone implants and devices: comparative bone structure and common model uses. Vet Pathol. 2015; 52 (5): 842-850.
Hamill J, Knutsen K, Denrick T. Biomechanical basis of human movement. 4th edition. Philadelphia: Wolters Kluwer; 2015.
Perry J, Burnfield J. Gait analysis: normal and pathological function. J Sports Sci Med. 2010; 9 (2): 353.
Acevedo JI, Sammarco VJ, Boucher HR, Parks BG, Schon LC, Myerson MS. Mechanical comparison of cyclic loading in five different first metatarsal shaft osteotomies. Foot Ankle Int. 2002; 23 (8): 711-716.
Fernández-Seguín LM, Diaz Mancha JA, Sánchez Rodríguez R, Escamilla Martínez E, Gómez Martín B, Ramos Ortega J. Comparison of plantar pressures and contact area between normal and cavus foot. Gait Posture. 2014; 39 (2): 789-792.
Hills AP, Hennig EM, McDonald M, Bar-Or O. Plantar pressure differences between obese and non-obese adults: a biomechanical analysis. Int J Obes Relat Metab Disord. 2001; 25 (11): 1674-1679.
Jacob HA. Forces acting in the forefoot during normal gait--an estimate. Clin Biomech (Bristol, Avon). 2001; 16 (9): 783-792.
Stokes IA, Hutton WC, Stott JR. Forces acting on the metatarsals during normal walking. J Anat. 1979; 129 (Pt 3): 579-590.
Luger EJ, Nissan M, Karpf A, Steinberg EL, Dekel S. Patterns of weight distribution under the metatarsal heads. J Bone Joint Surg Br. 1999; 81 (2): 199-202.
Richter M, Lintz F, Netto CC, Barg A, Burssens A, Ellis S. Weight bearing cone beam computed tomography (WBCT) in the foot and Ankle: a scientific, technical and clinical guide. Switzerland: Springer; 2020.
Martínez-Nova A, Pascual Huerta J, Sánchez-Rodríguez R. Cadence, age, and weight as determinants of forefoot plantar pressures using the Biofoot in-shoe system. J Am Podiatr Med Assoc. 2008; 98 (4): 302-310.
Geng X, Shi J, Chen W, Ma X, Wang X, Zhang C et al. Impact of first metatarsal shortening on forefoot loading pattern: a finite element model study. BMC Musculoskelet Disord. 2019; 20 (1): 625.
Amemiya A, Okonogi R, Yamakawa H, Susumu K, Jitsuishi T, Sugawara H et al. The external force associated with callus formation under the first metatarsal head is reduced by wearing rocker sole shoes. Annu Int Conf IEEE Eng Med Biol Soc. 2017; 2017: 4487-4490.
Bohnert L, Radeideh A, Bigolin G, Gautier E, Lottenbach M. Mechanical testing of maximal shift scarf osteotomy with inside-out plating compared to classic scarf osteotomy with double screw fixation. J Foot Ankle Surg. 2018; 57 (6): 1056-1058.
Lawless MW, Reveal GT, Laughlin RT. Foot pressures during gait: a comparison of techniques for reducing pressure points. Foot Ankle Int. 2001; 22 (7): 594-597.
Mohd Khirul HM, Faizal MF. Composite patch repair using natural fiber for aerospace applications, sustainable composites for aerospace applications. Science Direct. 2018; 171-209. Available in: https://doi.org/10.1016/B978-0-08-102131-6.00009-8
Crist BD, Borrelli J Jr, Harvey EJ. Essential biomechanics for orthopaedic trauma. A case base guide. 2nd edition. Switzerland: Springer; 2017.
Betts DC, Müller R. Mechanical regulation of bone regeneration: theories, models, and experiments. Front Endocrinol (Lausanne). 2014; 5: 211.
EVIDENCE LEVEL
III