2021, Number 3
<< Back Next >>
Med Int Mex 2021; 37 (3)
A non-biochemical criterion proposed for the definition of metabolic syndrome in a developing population of Latin America
Muñoz FL, Pou SA, Navarro-Lechuga E, Aballay LR, Díaz MP
Language: Spanish
References: 33
Page: 313-323
PDF size: 234.66 Kb.
ABSTRACT
Objectives: To propose and validate a definition for screening of metabolic syndrome
(MetS) called non-biochemical criterion (NBC), considering self-reported information
instead of biochemical data.
Materials and Methods: A descriptive, cross-sectional with analytical purposes
study in which adults were randomly recruited from the Global Health Project (Barranquilla,
Colombia, 2012-2013) and general health information was obtained by
using validated questionnaires. Fleiss kappa coefficient was used to evaluate the
degree of concordance between non-biochemical criterion and other internationally
recognized definitions. Estimated validity measures were sensitivity, specificity, and
area under ROC curve.
Resultads: Prevalence of metabolic syndrome by non-biochemical criterion (38.0%;
CI 34.3-42%) was statistically similar to by Harmonized Consensus definition
(39.2%; CI 35.7-43.4%) and International Diabetes Federation definition (37.9%; CI
34.1-41.8%). The agreement level between non-biochemical criterion versus other
recognized criteria were classified as moderate. Non-biochemical criterion adequately
classified about 71% of subjects. Sensitivity and specificity showed values above
65% and 76%, respectively.
Conclusions: The non-biochemical criterion definition achieved an acceptable
agreement and high level of sensitivity for the diagnosis of metabolic syndrome, which
merits attention, especially in developing countries.
REFERENCES
Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 1988; 37 (12): 1595-607. doi. 10.2337/diab.37.12.1595.
Ferrannini E. Metabolic syndrome: A solution in search of a problem. J Clin Endocrinol Metab 2007; 92 (2): 396-8. doi. 10.1210/jc.2006-0944.
Rodríguez AL, Sánchez M, Martínez L. Síndrome metabólico. Rev Cuba Endocrinol 2002; 13 (3).
Morales-Villegas E. Síndrome X vs síndrome metabólico: Entendiendo sus coincidencias y sus diferencias hacia una “nueva cardiología”. Arch Cardiol Méx 2006; 76 (Supl. 4).
Punthakee Z, Goldenberg R, Katz P. Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. Can J Diabetes 2018; 42: S10-5. doi. 10.1016/j. jcjd.2017.10.003.
Saad M, Cardoso G, Martins W, Velarde L, et al. Prevalence of metabolic syndrome in elderly and agreement among four diagnostic criteria. Arq Bras Cardiol. 2014; 102 (3): 263-269. doi. 10.5935/abc.20140013.
Grundy SM, Cleeman JI, Daniels SR, Donato KA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005; 112 (17): 2735-52. doi. 10.1161/CIRCULATIONAHA.105.169404.
Alberti K, Eckel R, Grundy S, Zimmet P, et al. Harmonizing the metabolic syndrome. Circulation 2009; 120 (16): 1640- 5. doi. 10.1161/CIRCULATIONAHA.109.192644.
Gurka MJ, Filipp SL, DeBoer MD. Geographical variation in the prevalence of obesity, metabolic syndrome, and diabetes among US adults. Nutr Diabetes 2018; 8 (1): 14. doi. 10.1038/s41387-018-0024-2.
Márquez S, Macedo G, Viramontes D, Ballart F, et al. The prevalence of metabolic syndrome in Latin America: A systematic review. Public Health Nutr 2011; 14 (10): 1702-13. doi. 10.1017/S1368980010003320.
Shin D, Kongpakpaisarn K, Bohra C. Trends in the prevalence of metabolic syndrome and its components in the United States 2007-2014. Int J Cardiol 2018; 259: 216-9. doi. https://doi.org/10.1016/j.ijcard.2018.01.139.
Sue S. Prevalence trend of metabolic syndrome in younger vs. older Chinese adults: a systematic review and metaanalysis. Soc Acad Prim Care 2018; 1 (1).
Cuevas A, Alvarez V, Carrasco F. Epidemic of metabolic syndrome in Latin America. Curr Opin Endocrinol Diabetes Obes 2011; 18 (2): 134-8. doi. 10.1097/ MED.0b013e3283449167.
Pico S, Bergonzoli G, Contreras A. Risk factors associated with metabolic syndrome in Cali, Colombia. Biomédica 2018; 39 (1). https://doi.org/10.7705/biomedica. v39i1.3935.
McNerney R. Diagnostics for developing countries. Diagnostics (Basels) 2015; 5 (2): 200-9. doi. 10.3390/ diagnostics5020200.
Pai N, Vadnais C, Denkinger C, Engel N, et al. Point-of-care testing for infectious diseases: diversity, complexity, and barriers in low-and middle-income countries. PLOS Med 2012; 9 (9): e1001306. doi. 10.1371/journal.pmed.1001306.
Cook RJ. Encyclopedia of Biostatistics. En: Armitage P, Colton T, editores. Encyclopedia of Biostatistics. Chichester, UK: John Wiley & Sons, Ltd; 2005.
Landis R, Koch G. The measurement of observer agreement for categorical data. Biometrics 1977; 33 (1): 159-74.
Burgos M, Manterola C. Cómo interpretar pruebas diagnósticas. Rev Chil Cir 2010; 62 (3): 301-8. http://dx.doi. org/10.4067/S0718-40262010000300018.
Matfin G. The metabolic syndrome: what’s in a name? Ther Adv Endocrinol Metab 2010; 1 (2): 39-45. doi. 10.1177/2042018810374290.
Paternina Á, Alcalá G, Paillier J, Romero Á, et al. Concordancia de tres definiciones de síndrome metabólico en pacientes hipertensos. Rev Salud Pública 2009; 11 (6): 898-908. doi. 10.1590/S0124-00642009000600006.
Reaven GM. The metabolic syndrome: is this diagnosis necessary? Am J Clin Nutr 2006; 83 (6): 1237-47. doi. 10.1093/ajcn/83.6.1237.
Restrepo J, Silva C, Andrade F, VH-Dover R. Acceso a servicios de salud: análisis de barreras y estrategias en el caso de Medellín, Colombia. Gerenc Políticas Salud 2014; 13 (27). doi. 10.11144/Javeriana.rgyps13-27.assa.
Hernández J, Rubiano D, Barona J. Barreras de acceso administrativo a los servicios de salud en población colombiana, 2013. Ciênc Saúde Coletiva 2015; 20 (6): 1947-58. https:// doi.org/10.1590/1413-81232015206.12122014.
Mora-García G, Salguedo-Madrid G, Ruíz-Díaz M, Ramos- Clason E, et al. Concordancia entre cinco definiciones de síndrome metabólico. Rev Esp Salud Pública 2012; 86 (3): 301-11.
Aschner P, Ruiz A, Balkau B, Massien C, et al. Association of abdominal adiposity with diabetes and cardiovascular disease in Latin America. J Clin Hypertens 2009; 11 (12): 769-74. doi. 10.1111/j.1559-4572.2008.00051.x.
Avezum Á, Perel P, Oliveira GBF, Lopez-Jaramillo P, et al. Challenges and opportunities to scale up cardiovascular disease secondary prevention in Latin America and the Caribbean. Glob Heart 2018; 13 (2): 83-91. doi. 10.1016/j.gheart.2017.05.002.
Camacho S, Maldonado N, Bustamante J, Llorente B, et al. How much for a broken heart? Costs of cardiovascular disease in Colombia using a person-based approach. Husain MJ, editor. PLOS One 2018; 13 (12): e0208513. doi. 10.1371/journal.pone.0208513.
WHO | Publications on NCDs [Internet]. WHO. [citado 30 de julio de 2019]. Disponible en: http://www.who.int/ nmh/publications/en/.
Cabrera E, Stusser B, Cálix W, Orlandi N, et al. Concordancia diagnóstica entre siete criterios de síndrome metabólico en adultos con sobrepeso y obesidad. Rev Peru Med Exp Salud Pública 2017; 34 (1): 19. http://dx.doi.org/10.17843/ rpmesp.2017.341.2763.
Gaitán H, Rubio J, Chantraine M. Interpreting obstetric and gynaecological disease screening and diagnostic test performance. Rev Colomb Obstet Ginecol 2009; 60 (4).
Ferreira A, Ramírez C, Mendoza V, Molina M. Utility of the waist-to-height ratio, waist circumference and body mass index in the screening of metabolic syndrome in adult patients with type 1 diabetes mellitus. Diabetol Metab Syndr 2014; 6: 32. doi. 10.1186/1758-5996-6-32.
Rodríguez M, Mendoza M, Sirtori AM, Caballero I, et al. Riesgo de diabetes mellitus tipo 2, sobrepeso y obesidad en adultos del Distrito de Barranquilla. RESPYN Rev Salud Pública Nutr 2018; 17 (4): 1-10. doi. https://doi. org/10.29105/respyn17.4-1.