2021, Número 2
<< Anterior Siguiente >>
Rev Biomed 2021; 32 (2)
Efecto anti-proliferativo en líneas celulares de cáncer de mama y cérvico-uterino causado por nanotubos de carbono múltipared - lectina de Phaseolus lunatus var. silvester Baudet
Aguilar-Vázquez J, Pina-Canseco MS, Gochi-Ponce Y, Pérez-Santiago AD
Idioma: Español
Referencias bibliográficas: 49
Paginas: 87-97
Archivo PDF: 1005.46 Kb.
RESUMEN
Introducción. Los nanotubos de carbono se han conjugado con
una amplia gama de moléculas para el uso en medicina debido a
las propiedades que presentan, como tamaño,
propiedades químicas y mecánicas, además que
pueden dirigirse a sitios específicos.
Objetivo. Evaluar el efecto citotóxico que presenta
el conjugado nanotubo de carbono de pared múltiple
con lectina de
Phaseolus lunatus (NTCPM-lPl)
sobre cuatro líneas celulares de carcinoma (MDA
MB-231, MCF-7, ViBo y HeLa).
Métodos. Los nanotubos de carbono de pared
múltiple (NTCPM) se purificaron en una mezcla de
ácidos concentrados, 1: 3 [HNO
3 (70 %) / H
2SO
4
(95-98 %)] y se sometieron a sonicación durante 4
h, el pH se ajustó a 7 y se incubó con lectina de
Phaseolus lunatus var. silvester (lPl) durante 4 h en
agitación constante a 4ºC. La actividad citotóxica de
lPl y el conjugado NTCPM-lPl se midió por pruebas
de MTT y cristal violeta a las 24, 48 y 72 h, en dos
líneas celulares de carcinoma.
Resultados. Las células ViBo, MDA MB-231 y
MCF-7 sincronizadas mostraron una reducción del
51, 53 y 47 % respectivamente con el conjugado
NTCPM-lPl, mientras que HeLa mostró un 55 %
con lPl sola.
Conclusiones. La actividad citotóxica se
potencializa utilizando el conjugado NTCPMlPl
en células ViBo, MDA MB-231 y MCF-7
sincronizadas; sin embargo, para células HeLa el
efecto es producido por la lPl sola por lo que es
innecesaria la conjugación.
REFERENCIAS (EN ESTE ARTÍCULO)
Hernández-Cruz P, Pérez-Campos E, Martínez-Martínez L, Ortiz B, Martínez G. Las lectinas vegetales como modelo de estudio de las interacciones proteínacarbohidrato. Rev Edu Bioquim; 2005 Mar; 24(1): 21- 27. https://www.redalyc.org/pdf/490/49024104. pdf
Yau T, Dan X, Ala-Ng CC, Bun-Ng T. Lectins with potential for anti-cancer therapy. Molecules. 2015 Feb; 20(3): 3791–810. doi.org/10.3390/molecules20033791
Yau-Sang C, Lixin-Xia, Bun-Ng T. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. Int J Biol Macromolecules. 2016 Apr; 85:335-45. doi.org/10.1016/j.ijbiomac.2015.12.094
Hernández-Rivera E, Mendiola-Olaya E, Blanco-Labra A, García-Gasca T. Efecto citotóxico diferencial de una fracción rica en lectina de Frijol Tépari (Phaseolus acutifolius) sobre Células Cancerígenas. 2° Congreso Nacional de Química Médica. Facultad de Ciencias Naturales. Universidad Autónoma de Querétaro. 2002; 1-4
Castillo–Villanueva A, Abdullaev F. Lectinas vegetales y sus efectos en el cáncer. Rev Invest Clín. 2005 Feb; 57(1): 55-64. http://www.scielo.org.mx/scielo.php?script=sci_ arttext&pid=S0034-83762005000100007
Presanna VK, Venkatesh YP. Characterization of onion lectin (Allium cepa agglutinin) as an immunomodulatory protein, inducing Th1-type immune response in vitro. Int Immunopharmacology. 2015 Jun; 26(2): 304- 13. doi.org/10.1016/j.intimp.2015.04.009
Vázquez-Luna A, Rivadeneyra-Domínguez E, Díaz- Sobad R. Lectlnas en frutas y plantas comestibles: nuevas posibilidades de interacción entre la ciencia de los alimentos y la biomedicina. CienciaUAT. 2012 Jun; 6(3): 60-66. https://www.redalyc.org/articulo. oa?id=441942927008
Fang EF, Lin P, Wong JH, Tsao SW, Ng TB. A lectin with anti-HIV-1 reverse transcriptase, antitumor, and nitric oxide inducing activities from seeds of extralong autumn purple bean. J Agric Food Chem. 2010 Jan; 58(4): 2221-
doi.org/10.1021/jf903964u 9. Pérez-Santiago AD. Estudio bioquímico de la lectina de Phaseolus lunatus var. silvester Baudet. Tesis para obtener el título de Maestra en Ciencias en Desarrollo Regional y Tecnológico. Instituto Tecnológico de Oaxaca. Oaxaca de Juárez. México. Agosto 1999
Galbraith W, Goldstein IJ. Phytohemagglutinin of the lima bean (Phaseolus lunatus); Isolation, characterization, and interaction with type A bloodgroup substance. Biochem. 1972 Oct; 11(21): 3976–84. doi.org/10.1021/bi00771a022
Montes-Fonseca SL. Aplicaciones médicas de los Nanotubos de carbón Nanovacunas, administración de fármacos y terapias génicas. Synthesis. 2008; 15: 1-5 http://www.uach.mx/extension_y_difusion/ synthesis/2009/10/05/aplicaciones_medicas_ de_los_ nanotubos_de_carbon.pdf
He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham- Huy P. Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int. 2013;2013:578290. doi. org/10.1155/2013/578290
Andrade-Cuel ML, López-López LI, Sáenz Galindo A. Nanotubos de carbono: funcionalización y aplicaciones biologicas. Rev Mex Cienc Farm. 2014 Mar; 43(3): 9-18. http://www.scielo.org.mx/pdf/rmcf/v43n3/v43n3a2.pdf
Chen L, Xie-H, Yu W. Functionalization methods of carbon nanotubes and its applications. In Carbon nanotubes applications on electron devices. edicion Ago 2011; 9:213-226 José Mauricio Marulanda, IntechOpen. doi.org/10.5772/18547
Departamento de Botánica, Instituto de Biología (IBUNAM), Phaseolus lunatus var. silvester Baudet, ejemplar de: Herbario Nacional de México (MEXU), Plantas Vasculares. En Portal de datos abiertos UNAM (en línea), México, Universidad Autónoma de México; http://datosabiertos.unam.mx./IBUNAM:MEXU:33373
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7; 72:248-54. doi.org/10.1016/0003- 2697(76)90527-3
Aragón OF, Mentele F, Auerswald EA. Amino acid sequence of a lectin-like protein from Lachesis muta stenophyrs venom. Toxicon. 1996 Jul; 34(7): 763-9. doi.org/10.1016/0041-0101(96)00011-6
Chen RJ, Zhang Y, Wang D, Dai H. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Am Chem Soc. 2001 Apr 25;123(16):3838-9. doi.org/10.1021/ja010172b
Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55- 63. doi.org/10.1016/0022-1759(83)90303-4
Hernández- Cruz CV. Efecto antiproliferativo, citotóxico e inductor de apoptosis del dietilditiocarbamato sódico (DDTC) en líneas celulares de cáncer cérvico uterino. Tesis Para obtener el título de Bióloga. Universidad Nacional Autónoma de México. Facultad de Estudios Superiores Zaragoza. Mayo 2013; https://www.zaragoza. unam.mx/wp-content/Portal2015/Licenciaturas/ biologia/tesis/tesis_hernandez_cruz.pdf
Nascimento KS, Cunha AI, Nascimento KS, Cavada BS, Azevedo AM, Aires-Barros MR. An overview of lectins purification strategies. J Mol Recognit. 2012 Nov; 25(11):527-41. doi.org/10.1002 / jmr.2200
Mundekkad D, Sulochana P. Purification and characterization of a novel anti-proliferative lectin from Morus alba L. leaves. Protein Pept Lett. 2012 Aug; 19(8):839-45. doi.org/10.2174/092986612801619516
He XM, Ji N, Xiang XC, Luo P, Bao JK. Purification, characterization, and molecular cloning of a novel antifungal lectin from the roots of Ophioglossum pedunculosum. Appl Biochem Biotechnol. 2011 Dec; 165(7-8):1458-72. doi.org/10.1007/s12010-011-9367-z
Ang, A.S.W., Cheung, R.C.F., Dan, X. et al. Purification and characterization of a glucosamine-binding antifungal lectin from Phaseolus vulgaris cv. chinese pinto beans with antiproliferative activity towards nasopharyngeal carcinoma cells. Appl Biochem Biotechnol. 2014 Jan; 172(2):672-86. doi.org/10.1007/s12010-013-0542-2
Wong JH, Wan CT, Ng BT. Characterization of a haemagglutinin from Hokkaido red bean (Phaseolus vulgaris cv. Hokkaido red bean). J Sci Food Agric. 2010 Jan 15; 90(1):70-7. doi.org/10.1002/jsfa.3782
Sharma A, Ng TB, Wong JH, Lin P. Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi beans). J Biomed Biotechnol. 2009;2009:929568. doi.org/10.1155/2009/929568
Shan-Chan Y, Xia L, Bun-Ng T. White kidney bean lectin exerts anti-proliferative and apoptotic effects on cancer cells. Int J Biol Macromol. 2016 Apr; 85:335-45. doi.org/10.1016/j.ijbiomac.2015.12.094
Vázquez-Ortiz G, Piña-Sánchez P, Hidalgo A, Lazos M, Moreno J, et al., Análisis de expresión global del cáncer cérvico uterino: rutas metabólicas y genes alterados. Rev Inv Clin. 2005 Jun; 57(3):434-41 http:// www.scielo.org. mx/pdf/ric/v57n3a7.pdf
López-Naranji F, Ávila- Álvarez EP, Guadarrama-Flores B, et al., Estudio de las células cancerosas y su activación celular en el cáncer de mama. Rev Edu Bioquim. 2018 Nov; 37(4):100-110. http://www.facmed.unam.mx/ publicaciones/ampb/numeros/2018/04/REB37(4) Dic2018.pdf
Poiroux G, Barre A, Van Damme EJM, Benoist H, Rougé P. Plant lectins targeting O-glycans at the cell surface as tools for cancer diagnosis, prognosis and therapy. Int J Mol Sci. 2017 Jun 9;18(6):1232. doi.org/10.3390/ ijms18061232
Hakomori S. Aberrant Glycosylation in tumors and tumor-associated carbohydrate antigens. Adv Cancer Res. 1989; 52:257-331. doi.org/10.1016/s0065- 230x(08)60215-8
Gallegos-Velasco BI, Coutiño R, Martínez G, Hernández-Cruz P. Marcadores glicosilados en cáncer de mama. Rev Edu Bioquim. 2008 Feb; 27(2):52-59 http://www.facmed.unam.mx/publicaciones/ampb/ numeros/2008/02/f_2Articulo.pdf
Gallegos-Velasco BI, Cuevas B, Pérez-Campos E, Coutiño R, Hernández-Cruz P. El papel de la Gelectina-3 en el desarrollo del cáncer de mama. Rev Edu Bioquim. 2013 Mar; 32(1): 3-12. http://www. scielo.org.mx/scielo.php?script=sci_arttext&pid =S1665-19952013000100002
Jeyaprakash AA, Katiyar S, Swaminathan CP, Sekar K, Surolia A, Vijayan M. Structural basis of the carbohydrate specificities of Jacalin: an X-ray and modeling study. J Mol Biol. 2003 Sep 5;332(1):217-28. doi.org/10.1016/ S0022-2836(03)00901-X
Wu J, Wang J, Wang S, Rao P. Lunatin, a novel lectin with antifungal and antiproliferative bioactivities from Phaseolus lunatus billb. Int J Biol Macromol. 2016 Aug; 89:717-24. doi.org/10.1016/j.ijbiomac.2016.04.092
E Lacerda RR, do Nascimento ES, de Lacerda JT, Pinto LD, Rizzi C, Bezerra MM, Pinto IR. et al. Lectin from seeds of a Brazilian lima bean variety (Phaseolus lunatus L. var. cascavel) presents antioxidant, antitumour and gastroprotective activities. Int J Biol Macromol. 2017 Feb; 95:1072-81. doi.org/10.1016/j.ijbiomac.2016.10.097
Chan YS, Wong JH, Ng TB. A glucuronic acid binding leguminous lectin with mitogenic activity toward mouse splenocytes. Protein Pept Lett. 2011 Feb;18(2):194-202. doi.org/10.2174/092986611794475110
Vásquez-Calleja MA. Preparación de películas biopoliméricas con la lectina de Phaseolus lunatus var. Silvester Baudet. Tesis para obtener el título de maestro en ciencias en desarrollo regional y tecnológico. Instituto Tecnológico de Oaxaca. Diciembre 2016
Hernández-Díaz P, Martín-González O, Rodríguez de Pablos-Vélez Y, Ganem-Báez FA. Aplicaciones de las lectinas. Rev Cubana Hematol Inmunol Hemoter. 1999; 15(2) http://scielo.sld.cu/scielo.php?script=sci_arttext& pid=S0864-02891999000200002
Flores-Carlos LF. Funcionalización de nanotubos de carbono con lectina de Phaseolus lunatus var. Silvester para su aplicación biológica. Tesis para obtener el título de Licenciada en Ingeniería Química. Instituto Tecnológico de Oaxaca. Noviembre 2017
Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR. Functionalized carbon nanotubes: biomedical applications. Int J Nanomedicine. 2012; 7:5361-74. doi.org/10.2147/IJN.S35832
Pastorin G, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes: Towards the delivery of therapeutic molecules. J Biomed Nanotec. 2005; 1(2): 1-10 https://www.nanomedicinelab.com/wp-content/ uploads/2012/03/8thslide05.pdf
Shi-Kam NW, Jessop TC, Wender PA, Dai H. Nanotube molecular transporters: internalization of carbon nanotube-protein conjugates into Mammalian cells. J Am Chem Soc. 2004 Jun 9;126(22):6850-1. doi.org/10.1021/ ja0486059
Pantarotto D, Briand JP, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun (Camb). 2004 Jan 7;(1):16- 7. doi.org/10.1039/b311254c
Madani SY, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011;6:2963- 79. doi.org/10.2147 / IJN.S16923
Śliwka L, Wiktorska K, Suchocki P, Milczarek M, Mielczarek S, Lubelska K, et al. The Comparison of MTT and CVS Assays for the Assessment of Anticancer Agent Interactions. PLoS One. 2016 May 19;11(5):e0155772. doi.org/10.1371/journal.pone.0155772
Madani SY, Tan A, Dwek M, Seifalian AM. Functionalization of single-walled carbon nanotubes and their binding to cancer cells. Int J Nanomedicine. 2012; 7:905-14. doi.org/10.2147/IJN.S25035
Xue Y, Bao L, Xiao X, Ding L, Lei J, Ju H. Noncovalent functionalization of carbon nanotubes with lectin for label-free dynamic monitoring of cell-surface glycan expression. Anal Biochem. 2011 Mar 1;410(1):92-7. doi. org/10.1016/j.ab.2010.11.019
Kavosi A, Ghale-Noei SH, Madani S, Khalighfard S, Khodayari S, Khodayari H, et al. he toxicity and therapeutic effects of single-and multi-wall carbon nanotubes on mice breast cancer. Sci Rep 8, 8375 (2018). doi.org/10.1038/s41598-018-26790-x