2020, Número 1
<< Anterior Siguiente >>
AbanicoVet 2020; 10 (1)
Efecto del nivel de dióxido de carbono de la incubadora sobre el desarrollo embrionario y parámetros de eclosión en pollo de engorda
Prado-Rebolledo O, Castellano-Ortega J, Ruíz-Ramírez J, ohnatan;Zepeda-Batista J, García-Casillas A
Idioma: Español
Referencias bibliográficas: 22
Paginas: 1-10
Archivo PDF: 654.05 Kb.
RESUMEN
El oxígeno (O
2) y el dióxido de carbono (CO
2) son gases vitales para el embrión durante el proceso de
incubación, su nivel es imprescindible en el momento del picaje, con la finalidad de evaluar el efecto del
nivel de dióxido de carbono de la incubadora sobre el desarrollo embrionario, los parámetros de eclosión y
el posterior crecimiento del pollo de engorda, se midió la pérdida de humedad, incubabilidad, peso del pollo,
tamaño del pollo, glucosa sanguínea, hematocrito y proteínas plasmáticas. Un total de 600 huevos de
reproductora comercial Cobb 500 de 41 semanas, se seleccionaron por peso de 65 y 70 g, se distribuyeron
en dos máquinas incubadoras. Una máquina se mantuvo a 4000 ppm y la otra a 3000 ppm de CO
2. Se
utilizó un diseño factorial 2 x 2. La incubabilidad fue mayor a 3000 ppm de CO
2 y peso de huevo de 65 g;
el pollo más pesado fue con huevo de 70 g, a mayor ppm de CO
2 menor pérdida de humedad, a menor
ppm de CO
2 se observó un pollo más grande, los niveles de glucosa no se afectaron, pero los valores de
proteínas plasmáticas fueron menores a 3000 ppm de CO
2. Se mejoran los parámetros de eclosión al bajar
las ppm de CO
2 durante el proceso de incubación.
REFERENCIAS (EN ESTE ARTÍCULO)
BURGGREN WW, Elmonoufy NA. 2017. Critical developmental windows for morphology and hematology revealed by intermittent and continuous hypoxic incubation in embryos of quail (Coturnix coturnix). PLoS One. 12(9):e0183649. ISSN: 1932-6203. http://dx.doi.org/10.1371/journal.pone.0183649
CORDEIRO CM, Hincke MT. 2016. Quantitative proteomics analysis of eggshell membrane proteins during chick embryonic development. Journal of Proteomics. 130:11- 25. ISSN: 1876-7737. http://dx.doi.org/10.1016/j.jprot.2015.08.014
D'ALBA L, Torres R, Waterhouse GIN, Eliason C, Hauber ME, Shawkey MD. 2017. What does the eggshell cuticle do? a functional comparison of avian eggshell cuticles. Physiological and Biochemical Zoology. 90(5):588-599. ISSN: 1537-5293. http://dx.doi.org/10.1086/693434
DEEMING DC. 2016. How does the bird-nest incubation unit work? Avian Biology Research. 9(2):103-113. ISSN: 1758-1559. http://dx.doi.org/10.3184/175815516X14567543242701
DE SMIT L, Bruggeman V, Tona JK, Debonne M, Onagbesan O, Arckens L, De Baerdemaeker J, Decuypere E. 2006. Embryonic developmental plasticity of the chick: Increased CO2 during early stages of incubation changes the developmental trajectories during prenatal and postnatal growth. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology. 145(2):166-175. ISSN: 1095-6433. https://doi.org/10.1016/j.cbpa.2006.06.046
DE SMIT L, Bruggeman V, Debonne M, Tona JK, Kamers B, Everaert N, Witters A, Onagbesan O, Arckens L, De Baerdemaeker J, Decuypere E. 2008. The effect of nonventilation during early incubation on the embryonic development of chicks of two commercial broiler strains differing in ascites susceptibility. Poultry Science. 87(1):551- 560. ISSN: 0032-5791. https://doi.org/10.3382/ps.2007-00322
FATHOLLAHIPOUR S, Patil PS, Leipzig ND. 2018. Oxygen regulation in development: lessons from embryogenesis towards tissue engineering. Cells Tissues Organs. 205(5- 6):350-371. ISSN: 1422-6421. http://dx.doi.org/10.1159/000493162
FLORES-SANTIN J, Rojas Antich M, Tazawa H, Burggren WW. 2018. Hematology from embryo to adult in the bobwhite quail (Colinus virginianus): Differential effects in the adult of clutch, sex and hypoxic incubation. Comparative biochemistry and physiology. Part A, Molecular & integrative physiology. 218(1):24-34. ISSN: 0301-5092. http://dx.doi.org/10.1016/j.cbpa.2018.01.005
GARCÍA HJ, Juárez EMA, Córdova SL. 2013. Gradual increase of CO2 during first stages of incubation with late change of O2 partial pressure, modifies the hatch trajectory of broiler chicks. Veterinaria México. 44(1):1-16. ISSN: 0032-5791. http://veterinariamexico.unam.mx/index.php/vet/article/view/325
GILDERSLEEVE RP, Boeschen DP. 1983. The effects of incubator carbon dioxide level on turkey hatchability. Poultry science. 62(5):779-784. ISSN: 0032-5791. http://dx.doi.org/10.3382/ps.0620779
HAMIDU JA, Torres CA, Johnson-Dahl ML, Korver DR. 2018. Physiological response of broiler embryos to different incubator temperature profiles and maternal flock age during incubation. 1. Embryonic metabolism and day-old chick quality. Poultry Science. 97(8):2934-2946. ISSN: 1525-3171. http://dx.doi.org/10.3382/ps/pey089
HUANG S, Zhang L, Rehman MU, Iqbal MK, Lan Y, Mehmood K, Zhang H, Qiu G, Nabi F, Yao W, Wang M, Li J. 2017. High altitude hypoxia as a factor that promotes tibial growth plate development in broiler chickens. PLoS One. 12(3):e0173698. ISSN: 1932-6203. http://dx.doi.org/10.1371/journal.pone.0173698
ITANI N, Salinas CE, Villena M, Skeffington KL, Beck C, Villamor E, Blanco CE, Giussani DA. 2018. The highs and lows of programmed cardiovascular disease by developmental hypoxia: studies in the chicken embryo. Journal of Physiology. 596(15):2991-3006. ISSN: 1469-7793. http://dx.doi.org/10.1113/JP274111
JOHN NM. 2017. Structure and function of the shell and the chorioallantoic membrane of the avian egg: embryonic respiration. In: The Biology of the Avian Respiratory System. Springer. 219-247 p. ISBN: 978-3-319-44152-8. https://doi.org/10.1007/978-3-319- 44153-5_9
KOYAMA T, Tennyson AJD. 2016. Respiratory pores on Ostrich Struthio camelus (Aves: Struthionidae) eggshells. Advances in Experimental Medicine and Biology. 923(1):51-55. ISSN: 0065-2598. http://dx.doi.org/10.1007/978-3-319-38810-6_7
MAATJENS CM, Reijrink IA, Molenaar R, van der Pol CW, Kemp B, van den Brand H. 2014a. Temperature and CO2 during the hatching phase. I. Effects on chick quality and organ development. Poultry science. 93(3):645-654. ISSN: 0032-5791. http://dx.doi.org/10.3382/ps.2013-03490
MAATJENS CM, Reijrink IA, van den Anker I, Molenaar R, van der Pol CW, Kemp B, van den Brand H. 2014b. Temperature and CO2 during the hatching phase. II. Effects on chicken embryo physiology. Poultry science. 93(3):655-663. ISSN: 0032-5791. http://dx.doi.org/10.3382/ps.2013-03491
MORTOLA JP, Labbe K. 2005. Oxygen consumption of the chicken embryo: interaction between temperature and oxygenation. Respiratory physiology & neurobiology. 146(1):97-106. ISSN: 1569-9048. http://dx.doi.org/10.1016/j.resp.2004.10.011
OKUR N. 2019. Effects of incubator carbon dioxide and oxygen levels, and egg weight on Broilers’ hatchability of fertile eggs. Brazilian Journal of Poultry Science. 21(3). ISSN: 1516-635X. http://dx.doi.org/10.1590/1806-9061-2019-1038
RAMACHANDRAN R, McDaniel CD. 2018. Parthenogenesis in birds: a review. Reproduction. 155(6):R245-R257. ISSN: 1741-7899. http://dx.doi.org/10.1530/REP-17- 0728
SAS. 2001. SAS/STAT User’s guide. 8.2, v. SAS Institute Inc. Cary, NC.
SCHEELE CW, van Der Klis JD, Kwakernaak C, Buys N, Decuypere E. 2003. Haematological characteristics predicting susceptibility for ascites. 2. High haematocrit values in juvenile chickens. British Poultry Science. 44(3):484-489. ISSN: 0007-1668. http://dx.doi.org/10.1080/00071660310001598300