2020, Número 1
Leucaena leucocephala y Opuntia ficus-indica reducen la producción de metano in vitro
Idioma: Español
Referencias bibliográficas: 38
Paginas: 1-13
Archivo PDF: 791.24 Kb.
RESUMEN
El objetivo fue evaluar la inclusión de Leucaena leucocephala (LL) y Opuntia ficus-indica (OFI) fresco y fermentado como sustituto del heno de alfalfa (HA) en la fracción forrajera sobre los patrones de fermentación, cinética de producción de gas y metano in vitro. Cuatro tratamientos (T1: 50% HA; T2: 30% LL y 20% HA; T3: 30% OFI y 20% HA; T4: 30% OFI fermentado y 20% HA) fueron formulados como dietas para bovinos. El contenido de compuestos fenólicos totales y taninos condensados se incrementaron más de 400% con T2 (P‹0.05); los taninos condensados aumentaron 45% cuando se incluyó OFI fermentado en T4. La concentración de nitrógeno amoniacal, ácidos grasos volátiles, producción de gas y la relación acetato:propionato fueron diferentes entre tratamientos (P‹0.05). La máxima producción de gas se observó cuando se añadió LL a la ración (P‹0.05); no se observaron cambios entre T1, T2 y T3 (P›0.05). Además, la fase lag disminuyó con T2 (P‹0.05). Adicionalmente, la producción de metano fue diferente entre tratamientos (P‹0.05); se observaron reducciones del 26% cuando se incluyó LL, y del 14% con OFI. De acuerdo con los resultados obtenidos, LL y el OFI son ingredientes que pudiesen incluirse en la dieta de bovinos y así, contribuir a la mitigación de gases de efecto invernadero.REFERENCIAS (EN ESTE ARTÍCULO)
ALMEIDA A, Nafarrete E, Alvarado A, Cervantes A, Luevanos Oropeza R, Balagurusamy N. 2011. Expresión genética en la digestión anaerobia: un paso adelante en la comprensión de las interacciones tróficas de esta biotecnología. Revista Científica de la Universidad Autónoma de Coahuila. 3(6):14-34. http://www.posgradoeinvestigacion.uadec.mx/AQM/No.%206/3.html
CHANDRASEKHARAIAH M, Thulasi A, Suresh KP, Sampath KT. 2011. Rumen degradable nitrogen requirements for optimum microbial protein synthesis and nutrient utilization in sheep fed on finger millet straw (Eleucine coracana) based diet. Animal Feed Science and Technology. 163:130-135. https://doi.org/10.1016/j.anifeedsci.2010.10.015
FIGUEROA-PÉREZ M, Pérez-Ramírez I, Paredes-López O, Mondragón-Jacobo C, Reynoso-Camacho R. 2016. Phytochemical composition and in vitro analysis of nopal (O. ficus-indica) cladodes at different stages of maturity. International Journal of Food Properties. 21(1):1728-1742. https://doi.org/10.1080/10942912.2016.1206126
FLORES-ORTIZ M, Reveles-Hernández M. 2010. Producción de nopal forrajero de diferentes variedades y densidades de plantación. In: VIII Simposium‐Taller Nacional y 1er Internacional “Producción y Aprovechamiento del Nopal”. Nuevo León, México: RESPYN; 2010. pp. 198-210. http://respyn2.uanl.mx/especiales/2010/ee-05- 2010/documentos/17.pdf
GONZÁLEZ-ARREOLA A, Murillo-Ortiz M, Pámanes-Carrasco G, Reveles-Saucedo F, Herrera-Torres E. 2019. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. Journal of Animal & Plant Sciences. 40(1): 6544-6553. https://m.elewa.org/Journals/wpcontent/ uploads/2019/04/4.Gonzalez.pdf
GRILLI DJ, Páez-Lama SA, Egea AV, Cerón-Cucchi ME, Cobos E, Allegretti L, Arenas N. 2015. Degradación y utilización de la hemicelulosa contenida en especies forrajeras Pseudobutyrivibrio ruminis y Pseudobutyrivibrio xilanivorans. REV FCA/Uncuyo. 47(2):231-243. https://www.redalyc.org/pdf/3828/Resumenes/Resumen_382842590018_1.pdf
HERRERA-TORRES E, Murillo M, Berumen L, Páez J, Villarreal G. 2014. Efecto de Sacharomyces cerevisiae y Kluyveromices marxianus durante el tiempo de fermentación en la calidad nutritiva del nopal forrajero. Ecosistemas y Recursos Agropecuarios. 1(1):33-40. http://www.scielo.org.mx/pdf/era/v1n1/v1n1a4.pdf
HRISTOV AN, Oh J, Firkins JL, Dijkastra J, Kebreab E, Waghorn G, Makkar HPS, Adesogan AT, Yang W,, Lee C, Gerber PJ, Henderson B, Tricario JM. 2013. Special Topics – Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science. 91:5045- 5069. http://dx.doi.org/10.2527/jas.2013-6583
IPCC. 2015: Meeting Report of the Intergovernmental Panel on Climate Change Expert Meeting on Climate Change, Food, and Agriculture. Mastrandrea MD, Mach KJ, Barros VR, Bilir TE, Dokken DJ, Edenhofer O, Field CB, Hiraishi T, Kadner S, Krug T, Minx JC, PichsMadruga R, Plattner JK, Qin D, Sokona Y, Stocker TF, Tignor M (eds.). World Meteorological Organization, Geneva, Switzerland, 68 pp. https://www.ipcc.ch/publications_and_data/publications_and_data_supporting_materi al.shtmL
INECC. 2018. Sexta comunicación nacional y segundo reporte bienal de actualización ante la convención marco de las Naciones Unidas sobre el cambio climático. Secretaria del Medio ambiente y recursos naturales (SEMARNAT). Instituto Nacional de Ecología y Cambio Climático. México. http://cambioclimatico.gob.mx:8080/xmlui/handle/publicaciones/117
MENKE K, Raab L, Salewski A, Steingass H, Fritz D, Schneider W. 1979. The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro. Journal of Agricultural Science. 93(1):217-222. https://doi.org/10.1017/S0021859600086305
PÁMANES-CARRASCO G, Herrera-Torres E, Murillo-Ortiz M, Reyes-Jáquez D. 2019. “Climate change mitigation in livestock produciton: nonconventional feedstuffs and alternative additives”. En: Abubakar M, Livestock health and farming. London, UK: IntechOpen publishers. http://doi.org/10.5772/intechopen.89433
PIÑEIRO-VÁZQUEZ AT, Jiménez-Ferrer GO, Chay-Canul AJ, Casanova-Lugo F, Días-Echeverría VF, Ayala-Burgos AJ, Solorio-Sánchez FJ, Aguilar-Pérez CF, Ku- Vera JC. 2017. Intake, digestibility, nitrogen balance and energy utilization in heifers fed low-quality forage and Leucaena leucocephala. Animal Feed Science and Technology. 228:194-201. https://doi.org/10.1016/j.anifeedsci.2017.04.009
TAN HY, Sieo CC, Abdullah N, Liang JB, Huang XD, Ho YW. 2011. Effects of condensed tannins from Leucaena on methane production, rumen fermentation and populations of methanogens and protozoa in vitro. Animal Feed Science and Technology. 169(3-4):185-193. https://doi.org/10.1016/j.anifeedsci.2011.07.004
TAVENDALE MH, Meagher LP, Pacheco D, Walker N, Attwood GT, Sivakumaran S. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tannin fractions on methanogenesis. Animal Feed Science and Technology. 123:403-419. https://doi.org/10.1016/j.anifeedsci.2005.04.037