2020, Número 2
<< Anterior Siguiente >>
Rev Mex Mastol 2020; 10 (2)
Epigenética del cáncer de mama
Vásquez-Moctezuma I, Fernández-Navarrete E, Márquez-Mendoza JM, Luna-Palencia GR
Idioma: Español
Referencias bibliográficas: 76
Paginas: 39-47
Archivo PDF: 225.42 Kb.
RESUMEN
Existen alteraciones genéticas bien caracterizadas que se relacionan de manera directa con la carcinogénesis, que incluyen amplificaciones, deleciones, mutaciones puntuales, reordenamientos cromosómicos y aneuploidía. Aparte de estas alteraciones se suman al origen del cáncer las alteraciones epigenéticas que generan una expresión de genes aberrantes y que contribuyen a la tumorigénesis. Se destaca que las modificaciones son de interés como blancos terapéuticos o en la prevención debido a que son reversibles. Las modificaciones epigenéticas son cambios moleculares que pueden modificar el fenotipo celular y el perfil de expresión génica de una célula, que son heredables durante la mitosis de las células somáticas (y algunas veces operan en la línea germinal), pero no incluyen cambios en la secuencia del ADN. Los mecanismos moleculares epigenéticos son la metilación del ADN, las modificaciones de histonas, los ARNs pequeños no codificantes o los ARN antisentido. Estas alteraciones están interconectadas y son importantes en el crecimiento y desarrollo normales de la glándula mamaria.
REFERENCIAS (EN ESTE ARTÍCULO)
Brait M, Sidransky D. Cancer epigenetics: above and beyond. Toxicol Mech Methods. 2011; 21 (4): 275-278.
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011; 21 (3): 381-395.
Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev. 2017; 46: 9-14.
Kanai Y, Hirohashi S. Alterations of DNA methylation associated with abnormalities of DNA methyltransferases in human cancers during transition from a precancerous to a malignant state. Carcinogenesis. 2007; 28 (12): 2434-2442.
Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res. 2003; 9 (12): 4415-4422.
Issa JP, Vertino PM, Wu J, Sazawal S, Celano P, Nelkin BD et al. Increased cytosine DNA-methyltransferase activity during colon cancer progression. J Natl Cancer Inst. 1993; 85 (15): 1235-1240.
Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y et al. Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. Blood. 2001; 97 (5): 1172-1179.
Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird PW. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 1999; 59 (10): 2302-2306.
Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. Mol Carcinog. 2002; 33 (3): 163-171.
Jovanovic J, Ronneberg JA, Tost J, Kristensen V. The epigenetics of breast cancer. Mol Oncol. 2010; 4 (3): 242-254.
Hinshelwood RA, Clark SJ. Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med (Berl). 2008; 86 (12): 1315-1328.
Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene. 2002; 21: 5462-5482.
Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E et al. Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet. 2001; 357 (9265): 1335-1336.
Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995; 55 (22): 4525-4530.
Graff JR, Herman JG, Lapidus RG, Chopra H, Xu R, Jarrard DF et al. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res. 1995; 55 (22): 5195-5199.
Romanov SR, Kozakiewicz BK, Holst CR, Stampfer MR, Haupt LM, Tlsty TD. Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature. 2001; 409 (6820): 633-637.
Krop I, Parker MT, Bloushtain-Qimron N, Porter D, Gelman R, Sasaki H et al. HIN-1, an inhibitor of cell growth, invasion, and AKT activation. Cancer Res. 2005; 65 (21): 9659-9669.
Krop IE, Sgroi D, Porter DA, Lunetta KL, LeVangie R, Seth P et al. HIN-1, a putative cytokine highly expressed in normal but not cancerous mammary epithelial cells. Proc Natl Acad Sci USA. 2001; 98 (17): 9796-9801.
Yang X, Yan L, Davidson NE. DNA methylation in breast cancer. Endocr Relat Cancer. 2001; 8 (2): 115-127.
Skliris GP, Munot K, Bell SM, Carder PJ, Lane S, Horgan K et al. Reduced expression of oestrogen receptor beta in invasive breast cancer and its re-expression using DNA methyl transferase inhibitors in a cell line model. J Pathol. 2003; 201 (2): 213-220.
Dobrovic A, Simpfendorfer D. Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res. 1997; 57 (16): 3347-3350.
Novak P, Jensen T, Oshiro MM, Watts GS, Kim CJ, Futscher BW. Agglomerative epigenetic aberrations are a common event in human breast cancer. Cancer Res. 2008; 68 (20): 8616-8625.
Shann YJ, Cheng C, Chiao CH, Chen DT, Li PH, Hsu MT. Genome-wide mapping and characterization of hypomethylated sites in human tissues and breast cancer cell lines. Genome Res. 2008; 18 (5): 791-801.
Bae YK, Brown A, Garrett E, Bornman D, Fackler MJ, Sukumar S et al. Hypermethylation in histologically distinct classes of breast cancer. Clin Cancer Res. 2004; 10 (18): 5998-6005.
Fackler MJ, McVeigh M, Evron E, Garrett E, Mehrotra J, Polyak K et al. DNA methylation of RASSF1A, HIN-1, RAR-beta, Cyclin D2 and twist in in situ and invasive lobular breast carcinoma. Int J Cancer. 2003; 107 (6): 970-975.
Feng W, Shen L, Wen S, Rosen DG, Jelinek J, Hu X et al. Correlation between CpG methylation profiles and hormone receptor status in breast cancers. Breast Cancer Res. 2007; 9 (4): R57.
Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: implications for disease and therapy. Nat Rev Genet. 2009; 10 (1): 32-42.
Bosch-Presegue L, Vaquero A. The dual role of sirtuins in cancer. Genes Cancer. 2011; 2 (6): 648-662.
Peng L, Seto E. Deacetylation of nonhistone proteins by HDACs and the implications in cancer. Handb Exp Pharmacol. 2011; 206: 39-56.
Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65 (16): 7065-7070.
Huang GL, Zhang XH, Guo GL, Huang KT, Yang KY, Shen X et al. Clinical significance of miR-21 expression in breast cancer: SYBR-Green I-based real-time RT-PCR study of invasive ductal carcinoma. Oncol Rep. 2009; 21 (3): 673-679.
Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K et al. Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res Treat. 2005; 94 (1): 11-16.
Krusche CA, Wulfing P, Kersting C, Vloet A, Bocker W, Kiesel L et al. Histone deacetylase-1 and -3 protein expression in human breast cancer: a tissue microarray analysis. Breast Cancer Res Treat. 2005; 90 (1): 15-23.
Saji S, Kawakami M, Hayashi S, Yoshida N, Hirose M, Horiguchi S et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer. Oncogene. 2005; 24 (28): 4531-4539.
Chervona Y, Costa M. Histone modifications and cancer: biomarkers of prognosis? Am J Cancer Res. 2012; 2 (5): 589-597.
Elsheikh SE, Green AR, Rakha EA, Powe DG, Ahmed RA, Collins HM et al. Global histone modifica tions in breast cancer correlate with tumor phenotypes, prognostic factors, and patient outcome. Cancer Res. 2009; 69 (9): 3802-3809.
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 2002; 298 (5595): 1039-1043.
Kuzmichev A, Nishioka K, Erdjument-Bromage H, Tempst P, Reinberg D. Histone methyltransferase activity associated with a human multiprotein complex containing the enhancer of Zeste protein. Genes Dev. 2002; 16 (22): 2893-2905.
Kirmizis A, Bartley SM, Kuzmichev A, Margueron R, Reinberg D, Green R et al. Silencing of human polycomb target genes is associated with methylation of histone H3 Lys 27. Genes Dev. 2004; 18 (13): 1592-1605.
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003; 100 (20): 11606-11611.
Pietersen AM, Horlings HM, Hauptmann M, Langerod A, Ajouaou A, Cornelissen-Steijger P et al. EZH2 and BMI1 inversely correlate with prognosis and TP53 mutation in breast cancer. Breast Cancer Res. 2008; 10 (6): R109.
Avril-Sassen S, Goldstein LD, Stingl J, Blenkiron C, Le Quesne J, Spiteri I et al. Characterization of microRNA expression in post-natal mouse mammary gland development. BMC Genomics. 2009; 10: 548.
Sempere LF, Christensen M, Silahtaroglu A, Bak M, Heath CV, Schwartz G et al. Altered microRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007; 67 (24): 11612-11620.
Blenkiron C, Goldstein LD, Thorne NP, Spiteri I, Chin SF, Dunning MJ et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007; 8 (10): R214.
Ibarra I, Erlich Y, Muthuswamy SK, Sachidanandam R, Hannon GJ. A role for microRNAs in maintenance of mouse mammary epithelial progenitor cells. Genes Dev. 2007; 21 (24): 3238-3243.
Dangi-Garimella S, Yun J, Eves EM, Newman M, Erkeland SJ, Hammond SM et al. Raf kinase inhibitory protein suppresses a metastasis signaling cascade involving LIN28 and let-7. EMBO J. 2009; 28 (4): 347-358.
Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature. 2005; 435 (7043): 834-838.
Bommer GT, Gerin I, Feng Y, Kaczorowski AJ, Kuick R, Love RE et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol. 2007; 17 (15): 1298-1307.
Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA. 2006; 103 (24): 9136-9141.
Kato M, Paranjape T, Muller RU, Nallur S, Gillespie E, Keane K et al. The mir-34 microRNA is required for the DNA damage response in vivo in C. elegans and in vitro in human breast cancer cells. Oncogene. 2009; 28 (25): 2419-2424.
Hoppe R, Achinger-Kawecka J, Winter S, Fritz P, Lo WY, Schroth W et al. Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. Eur J Cancer. 2013; 49 (17): 3598-3608.
Parrella P, Barbano R, Pasculli B, Fontana A, Copetti M, Valori VM et al. Evaluation of microRNA-10b prognostic significance in a prospective cohort of breast cancer patients. Mol Cancer. 2014; 13: 142.
Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature. 2007; 449 (7163): 682-688.
Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res. 2005; 65 (14): 6029-6033.
Yan LX, Huang XF, Shao Q, Huang MY, Deng L, Wu QL et al. MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA. 2008; 14 (11): 2348-2360.
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene. 2007; 26 (19): 2799-2803.
Luna-Palencia GR, Correa-Basurto J, Vásquez-Moctezuma I. El ácido valproico como agente sensibilizador al tratamiento anticáncer. Gac Med Mex. 2019; 155 (4): 417-422.
Goffin J, Eisenhauer E. DNA methyltransferase inhibitors-state of the art. Ann Oncol. 2002; 13 (11): 1699-1716.
Cheng JC, Matsen CB, Gonzales FA, Ye W, Greer S, Marquez VE et al. Inhibition of DNA methylation and reactivation of silenced genes by zebularine. J Natl Cancer Inst. 2003; 95 (5): 399-409.
Cihak A. Biological effects of 5-azacytidine in eukaryotes. Oncology. 1974; 30 (5): 405-422.
Cihak A, Vesely J. Effects of 5-aza-2’-deoxycytidine on DNA synthesis in mouse lymphatic tissues. Neoplasma. 1978; 25 (4): 385-393.
Flatau E, Gonzales FA, Michalowsky LA, Jones PA. DNA methylation in 5-aza-2’-deoxycytidine-resistant variants of C3H 10T1/2 C18 cells. Mol Cell Biol. 1984; 4 (10): 2098-2102.
Christman JK, Schneiderman N, Acs G. Interaction of DNA methyltransferase and other non-histone proteins isolated from friend erythroleukemia cell nuclei with 5-azacytosine residues in DNA. Prog Clin Biol Res. 1985; 198: 105-118.
Momparler RL, Bouchard J, Onetto N, Rivard GE. 5-aza-2’-deoxycytidine therapy in patients with acute leukemia inhibits DNA methylation. Leuk Res. 1984; 8 (2): 181-185.
Momparler RL, Momparler LF, Samson J. Comparison of the antileukemic activity of 5-AZA-2’-deoxycytidine, 1-beta-d arabinofuranosylcytosine and 5-azacytidine against L1210 leukemia. Leuk Res. 1984; 8 (6): 1043-1049.
Steuber CP, Krischer J, Holbrook T, Camitta B, Land V, Sexauer C et al. Therapy of refractory or recurrent childhood acute myeloid leukemia using amsacrine and etoposide with or without azacitidine: a Pediatric Oncology Group randomized phase II study. J Clin Oncol. 1996; 14: 1521-1525.
Miller TA, Witter DJ, Belvedere S. Histone deacetylase inhibitors. J Med Chem. 2003; 46 (5): 5097-5116.
Yoshida M, Horinouchi S, Beppu T. Trichostatin A and trapoxin: novel chemical probes for the role of histone acetylation in chromatin structure and function. Bioessays. 1995; 17 (5): 423-430.
Codd R, Braich N, Liu J, Soe CZ, Pakchung AA. Zn(II)-dependent histone deacetylase inhibitors: suberoylanilide hydroxamic acid and trichostatin A. Int J Biochem Cell Biol. 2009; 41 (4): 736-739.
Richon VM, Emiliani S, Verdin E, Webb Y, Breslow R, Rifkind RA et al. A class of hybrid polar inducers of transformed cell differentiation inhibits histone deacetylases. Proc Natl Acad Sci USA. 1998; 95 (6): 3003-3007.
Butler LM, Zhou X, Xu WS, Scher HI, Rifkind RA, Marks PA et al. The histone deacetylase inhibitor SAHA arrests cancer cell growth, up-regulates thioredoxin-binding protein-2, and down-regulates thioredoxin. Proc Natl Acad Sci USA. 2002; 99 (18): 11700-11705.
Glaser KB, Li J, Staver MJ, Wei RQ, Albert DH, Davidsen SK. Role of class I and class II histone deacetylases in carcinoma cells using siRNA. Biochem Biophys Res Commun. 2003; 310 (2): 529-536.
Gui CY, Ngo L, Xu WS, Richon VM, Marks PA. Histone deacetylase (HDAC) inhibitor activation of p21WAF1 involves changes in promoter-associated proteins, including HDAC1. Proc Natl Acad Sci USA. 2004; 101 (5): 1241-1246.
Richon VM, Zhou X, Secrist JP, Cordon-Cardo C, Kelly WK, Drobnjak M et al. Histone deacetylase inhibitors: assays to assess effectiveness in vitro and in vivo Methods Enzymol. 2004; 376: 199-205.
Chang HG, Kim SJ, Chung KW, Noh DY, Kwon Y, Lee ES et al. Tamoxifen-resistant breast cancers show less frequent methylation of the estrogen receptor beta but not the estrogen receptor alpha gene. J Mol Med (Berl). 2005; 83 (2): 132-139.
Yang X, Ferguson AT, Nass SJ, Phillips DL, Butash KA, Wang SM et al. Transcriptional activation of estrogen receptor alpha in human breast cancer cells by histone deacetylase inhibition. Cancer Res. 2000; 60 (24): 6890-6894.