2020, Número 1
Sobre la asociación entre los eventos clínicos de los pacientes trasplantados renales y la composición corporal
Borroto DG, Alanes SJG, Barceló AM
Idioma: Español
Referencias bibliográficas: 82
Paginas: 141-158
Archivo PDF: 675.68 Kb.
RESUMEN
Introducción: El estudio de la composición corporal del nefrópata que ha sido trasplantado es un
elemento importante de la evaluación nutricional, y se encamina a detectar la repercusión de varios
eventos clínicos que a través de la inflamación (como factor fisiopatológico integrador) pueden
generar trastornos nutricionales y con ello un riesgo mayor para una evolución desfavorable.
Objetivo: Estimar las asociaciones que puedan existir entre la composición corporal del nefrópata
trasplantado (NT) y factores demográficos y clínicos selectos.
Diseño del estudio: Prospectivo,
transversal, analítico.
Serie de estudio: Ochenta y ocho NTs (Hombres: 57.9 %; Edad promedio:
46.2 ± 11.4 años; Edades ≥ 60 años: 12.5 %; Donante cadáver: 81.8 %; Tiempo de realizado del
trasplante renal: 6.1 ± 5.8 años; eFG promedio: 49.0 ± 16.7 mL.minuto-1 * m
2 de superficie
corporal; eFG ‹ 60 mL.minuto-1: 73.8 %) con un año (o más) de vida del injerto renal; que eran
tratados con la combinación prednisona + ciclosporina A + micofenolato de mofetil; y que no
presentaron intercurrencias en el momento de la investigación.
Métodos: La composición corporal
del NT se reconstruyó mediante bioimpedancia eléctrica (BIE) de arco inferior, y se describió con
un modelo tetracompartimental: Peso corporal = Masa grasa + Proteínas + Minerales + Agua
corporal total. Se hicieron previsiones adicionales para la grasa visceral (GV). El tamaño de los
compartimientos corporales se correlacionó con el sexo y la edad del sujeto, el tipo de donante del
órgano, el tiempo transcurrido del trasplante, la tasa de filtración glomerular, y el Índice de Masa
Corporal (IMC) como indicador de adiposidad corporal global.
Resultados: La composición
corporal del NT fue como sigue: Peso corporal: 70.4 ± 16.3 kg; IMC: 25.1 ± 5.1 kg.m
-2; ICT: 0.54
± 0.08; Grasa corporal: 24.5 ± 11.1 % del peso corporal; Proteínas: 18.1 4.3 %; Minerales: 3.8 ±
0.5 %; y Agua corporal total: 53.6 ± 7.2 %; respectivamente. El tamaño de la masa magra fue del
75.5 ± 13.9 %. La GV fue de 7.5 ± 4.1 kg. La GC fue dependiente del sexo del NT: Hombres: 19.0
± 7.8 % vs. Mujeres: 32.1 ± 10.4 % (Δ = -13.1 %; p ‹ 0.05). Se encontraron relaciones circulares
entre la GC, el IMC, el ICT y la GV. El cambio en la GC se trasladó a cambios en el agua corporal
y el contenido corporal de proteínas. Conclusiones: El tamaño corriente de los compartimientos
corporales en los NTs solo podría explicarse por el sexo del sujeto. Una GC aumentada se asoció
con valores mayores del IMC, el ICT y la GV.
Borroto Díaz G, Alanes Sirpa JG, Barceló
Acosta M. Sobre la asociación entre los eventos clínicos de los pacientes trasplantados renales y la composición corporal. RCAN Rev Cubana Aliment Nutr 2020;30(1):141-158. RNPS: 2221. ISSN:
1561-2929.
REFERENCIAS (EN ESTE ARTÍCULO)
Sharma K, Mogensen KM, Robinson MK. Pathophysiology of critical illness and role of nutrition. Nutr Clin Pract 2019;34:12-22.
Hill GL. Implications of critical illness, injury, and sepsis on lean body mass and nutritional needs. Nutrition 1998;14: 557-8.
Müller MJ, Bosy-Westphal A, Later W, Haas V, Heller M. Functional body composition: insights into the regulation of energy metabolism and some clinical applications. Eur J Clin Nutr 2009;63: 1045-56.
Pupim LB, Ikizler TA. Assessment and monitoring of uremic malnutrition. J Ren Nutr 2004;14:6-19.
Lee SY, Gallagher D. Assessment methods in human body composition. Curr Op Clin Nutr Metab Care 2008;11:566-72.
Jiménez EG. Composición corporal: Estudio y utilidad clínica. Endocrinol Nutr 2013;60:69-75.
Román MC, Ruiz IR, Cos SR, Bellido MC. Análisis de la composición corporal por parámetros antropométricos y bioeléctricos. Anales Pediatr 2004;61: 23-31.
Wang ZM, Pierson Jr RN, Heymsfield SB. The five-level model: A new approach to organizing bodycomposition research. Am J Clin Nutr 1992;56:19-28.
Wang Z, Heshka S, Pierson Jr RN, Heymsfield SB. Systematic organization of body-composition methodology: An overview with emphasis on componentbased componentbased methods. Am J Clin Nutr 1995;61:457-65.
Borga M, West J, Bell JD, Harvey NC, Romu T, Heymsfield SB, Leinhard OD. Advanced body composition assessment: From body mass index to body composition profiling. J Invest Med 2018;66:1-9.
Muller MJ Methods used in body composition analysis on the prediction of resting energy expenditure. Eur J Clin Nutr 2007;61:582-9.
Elia M. Body composition analysis: An evaluation of 2 component models, multicomponent models and bedside techniques. Clin Nutr 1992;11:114-27.
Pellé G, Branche I, Kossari N, Tricot L, Delahousse M, Dreyfus JF. Is 3- compartment bioimpedance spectroscopy useful to assess body composition in renal transplant patients? J Ren Nutr. 2013;23:363-6.
Fuller NJ, Jebb SA, Laskey MA, Coward WA, Elia M. Four-component model for the assessment of body composition in humans: Comparison with alternative methods, and evaluation of the density and hydration of fat-free mass. Clin Sci 1992;82:687-93.
Pietrobelli A, Heymsfield SB, Wang ZM, Gallagher D. Multi-component body composition models: Recent advances and future directions. Eur J Clin Nutr 2001;55:69-75.
Wang J, Thornton JC, Kolesnik S, Pierson Jr RN. Anthropometry in body composition: An overview. Ann NY Acad Sci 2000;904:317-26.
Brodie D, Moscrip V, Hutcheon R. Body composition measurement: A review of hydrodensitometry, anthropometry, and impedance methods. Nutrition 1998;14: 296-310.
Dewit O, Fuller NJ, Fewtrell MS, Elia M, Wells JCK. Whole body air displacement plethysmography compared with hydrodensitometry for body composition analysis. Arch Dis Child 2000;82:159-64.
Bachrach LK. Dual energy X-ray absorptiometry (DEXA) measure- ments of bone density and body composition: Promises and pitfalls. J Pediatr Endocrinol Metab 2000;13:983-8.
Yanishi M, Kinoshita H, Tsukaguchi H, Kimura Y, Koito Y, Jino E; et al. Dual energy X-ray absorptiometry and bioimpedance analysis are clinically useful for measuring muscle mass in kidney transplant recipients with sarcopenia. Transplant Proc 2018;50: 150-4.
Stenver DI, Gotfredsern A, Hilsted J, Nielsen B. Body composition in hemodialysis patients measured by dualenergy X-ray absorptiometry. Am J Nephrol 1995;15:105-10.
Heymsfield SB, Waki M, Kehayias J, Lichtman S, Dilmanian FA, Kamen Y; et al. Chemical and elemental analysis of humans in vivo using improved body composition models. Am J Physiol Endocrinol Metab 1991;261:E190-E198.
Jaffrin MY. Body composition determination by bioimpedance: An update. Curr Op Clin Nutr Metab Care 2009;12:482-6.
Hall Smith C. Evaluación del estado nutricional del nefrópata en diálisis iterada mediante bioimpedancia eléctrica. RCAN Rev Cubana Aliment Nutr 2019;29(1 Supl)S1-S69.
Fuller MF, Fowler PA, McNeill G, Foster MA. Imaging techniques for the assessment of body composition. J Nutr 1994;124(Suppl 8):S1546-S1550.
Dabiri S, Popuri K, Feliciano EMC, Caan BJ, Baracos VE, Beg MF. Muscle segmentation in axial computed tomography (CT) images at the lumbar (L3) and thoracic (T4) levels for body composition analysis. Comput Med Imag Graph 2019;75:47-55.
Taicher GZ, Tinsley FC, Reiderman A, Heiman ML. Quantitative magnetic resonance (QMR) method for bone and whole-body-composition analysis. Anal Bioanal Chem 2003;377:990-1002.
Dolgos S, Hartmann A, Jenssen T, Isaksen GA, Pfeffer P, Bollerslev J. Determinants of short-term changes in body composition following renal transplantation. Scand J Urol Nephrol 2009;43:76-83.
Buckinx F, Landi F, Cesari M, Fielding RA, Visser M, Engelke K; et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J Cachexia Sarcopenia Muscle 2018;9:269-78.
Michels KB, Greenland S, Rosner BA. Does body mass index adequately capture the relation of body composition and body size to health outcomes? Am J Epidemiol 1998;147:167-72.
Lukaski HC. Evolution of bioimpedance: A circuitous journey from estimation of physiological function to assessment of body composition and a return to clinical research. Eur J Clin Nutr 2013;67(1 Suppl):S2-S9.
Khalil SF, Mohktar MS, Ibrahim F. The theory and fundamentals of bioimpedance analysis in clinical status monitoring and diagnosis of diseases. Sensors 2014;14:10895-928.
Johansen KL, Lee C. Body composition in chronic kidney disease. Curr Op Nephrol Hypertension 2015;24:268-75.
Beddhu S, Pappas LM, Ramkumar N, Samore M. Effects of body size and body composition on survival in hemodialysis patients. J Am Soc Nephrol 2003;14:2366-72.
van Den Ham EC, Kooman JP, Christiaans MH, Nieman FH, van Kreel BK, Heidendal GA, van Hooff JP. Body composition in renal transplant patients: Bioimpedance analysis compared to isotope dilution, dual energy X-ray absorptiometry, and anthropometry. J Am Soc Nephrol 1999;10:1067-79.
El Haggan W, de Ligny BH, Partiu A, Sabatier JP, Lobbedez T, Levaltier B, Ryckelynck JP. The evolution of weight and body composition in renal transplant recipients: Two-year longitudinal study. Transplant Proc 2006;38:3517-9.
Caetano C, Valente A, Oliveira T, Garagarza C. Body composition and mortality predictors in hemodialysis patients. J Renal Nutr 2016;26:81-6.
Rymarz A, Bartoszewicz Z, Szamotulska K, Niemczyk S. The associations between body cell mass and nutritional and inflammatory markers in patients with chronic kidney disease and in subjects without kidney disease. J Renal Nutr 2016;26:87-92.
Hwang SD, Lee JH, Lee SW, Kim JK, Kim MJ, Song JH. Risk of overhydration and low lean tissue index as measured using a body composition monitor in patients on hemodialysis: A systemic review and meta-analysis. Renal Failure 2018;40:51-9.
Molnar MZ, Keszei A, Czira ME, Rudas A, Ujszaszi A, Haromszeki B; et al. Evaluation of the malnutritioninflammation score in kidney transplant recipients. Am J Kidney Dis 2010;56: 102-11.
Molnar MZ, Czira ME, Rudas A, Ujszaszi A, Lindner A, Fornadi K; et al. Association of the malnutritioninflammation score with clinical outcomes in kidney transplant recipients. Am J Kidney Dis 2011;58: 101-8.
Teplan V, Valkovsky I, Teplan Jr V, Stollova M, Vyhnanek F, Andel M. Nutritional consequences of renal transplantation. J Ren Nutr 2009;19: 95-100.
Saxena A, Sharma RK, Gupta A. Graft function and nutritional parameters in stable postrenal transplant patients. Saudi J Kidney Dis Transpl 2016;27:356-61.
Tutal E, Sezer S, Uyar ME, Bal Z, Demirci BG, Acar FN. Evaluation of nutritional status in renal transplant recipients in accordance with changes in graft function. Transplant Proc 2013;45: 1418-22.
van den Ham EC, Kooman JP, Christiaans MH, van Hooff JP. Relation between steroid dose, body composition and physical activity in renal transplant patients. Transplantation 2000;69: 1591-8.
van den Ham EC, Kooman JP, Christiaans MH, Nieman FH, van Hooff JP. Weight changes after renal transplantation: a comparison between patients on 5‐mg maintenance steroid therapy and those on steroid‐free immunosuppressive therapy. Transplant Int 2003;16:300-6.
Małgorzewicz S, Wołoszyk P, Chamienia A, Jankowska M, DębskaŚlizień A. Obesity risk factors in patients after kidney transplantation. Transplant Proc 2018;50:1786-9.
Gill IS, Hodge EE, Novick AC. Impact of obesity on renal transplantation. Transplant Proc 1993;25:1047-51.
von Düring ME, Jenssen T, Bollerslev J, Åsberg A, Godang K, Hartmann A. Visceral fat is strongly associated with post-transplant diabetes mellitus and glucose metabolism 1 year after kidney transplantation. Clin Transplant 2017; 31:45-9.
Pantik C, Cho YE, Hathaway D, Tolley E, Cashion A. Characterization of body composition and fat mass distribution 1 year after kidney transplantation. Prog Transplant 2017;27:10-5.
Borroto Díaz G, Quintanilla Andino M, Barceló Acosta M, Cabrera Valdés L. Ganancia de peso, dismetabolia y función del injerto al año del trasplanterenal. RCAN Rev Cubana Aliment Nut 2012;22:196-202.
Borroto Díaz G, Quintanilla Andino M, Barceló Acosta M, Cabrera Valdés L. Grasa visceral, circunferencia de la cintura e injerto renal. Asociación con trastornos metabólicos y función renal. RCAN Rev Cubana Aliment Nutr 2013;23:268-83.
Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Ann Intern Med 1999;130:461-70.
Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Volume 177. Human Kinetics Books. Champaign [Illinois]: 1988. pp. 3-8.
Weiner JS, Lourie JA. Human biology. A guide to field methods. International Biological Program. Handbook number 9. Blackwell Scientific Publications. Oxford: 1969.
WHO Working Group. Use and interpretation of anthropometric indicators of nutritional status. Bulletin WHO 1986;64:929-41.
De León Medrano DL, Muñoz Muñoz MG, Ochoa C. La antropometría en el reconocimiento del riesgo cardiovascular. RCAN Rev Cubana Aliment Nutr 2017;27:167-88.
Santana Porbén S, Martínez Canalejo H. Manual de Procedimientos Bioestadísticos. Segunda Edición. EAE Editorial Académica Española. ISBN-13: 9783659059629. ISBN-10: 3659059625. Madrid: 2012.
World Medical Association. Declaration of Helsinki on the ethical principles for medical research involving human subjects. Eur J Emergency Med 2001;8: 221-3.
Santos Hernández CM. Desnutrición, sobrepeso, obesidad y osteoporosis.Criterios para el diagnóstico biofísico de una población adulta. Manual de Procedimientos para el Diagnóstico. RCAN Rev Cubana Aliment Nutr 2008;18(2 Supl 2):S6-S84.
Chapela S, Martinuzzi A. Pérdida de masa muscular en el paciente críticamente enfermo: ¿Caquexia, sarcopenia y/o atrofia? Impacto en la respuesta terapéutica y la supervivencia. RCAN Rev Cubana Aliment Nutr 2018; 28:393-416.
Yanishi M, Kimura Y, Tsukaguchi H, Koito Y, Taniguchi H, Mishima T. Factors associated with the development of sarcopenia in kidney transplant recipients. Transplant Proc 2017;49: 288-92.
Takamoto D, Kawahara T, Mochizuki T Makiyama K, Teranishi J, Uemura H. A Longer history of hemodialysis can lead to sarcopenia in renal transplantation patients. Transplant Proc 2018;50: 2447-50.
Stangl MK, Böcker W, Chubanov V, Ferrari U, Fischereder M, Gudermann T. Sarcopenia- Endocrinological and neurological aspects. Exp Clin Endocrinol Diabetes 2018;10:123-9.
Kent PS. Issues of obesity in kidney transplantation. J.Ren Nutr 2007;17: 107-13.
Cacciola RA, Pujar K, Ilham MA, Puliatti C, Asderakis A, Chavez R. Effect of degree of obesity on renal transplant outcome. Transplant Proc 2008;40:408-12.
Jindal RM. Influence of dialysis on posttransplant events. Clin Transplant 2002;16:18-23.
Gill IS, Hodge EE, Novick AC. Impact of obesity on renal transplantation. Transplant Proc 1993;25:1047-8.
Potluri K, Hou S. Obesity in kidney transplant and candidates. Am J Kidney Dis 2010;56:143-56.
Clunk JM, Lin CY, Curtis JJ. Variables affecting weight gain in renal transplant recipients. Am J Kidney Dis 2001;38: 349-53.
Micozkadioglu H, Ozdemir FN, Sezer S, Arat Z, Haberal M. Weight gain after living-related renal transplantation affects long-term graft function. Transplant Proc 2005;37:1029-32.
Dierkes J, Dahl H, Lervaag Welland N, Sandnes K, Sæle K, Sekse I. High rates of central obesity and sarcopenia in CKD irrespective of renal replacement therapy- An observational crosssectional study. BMC Nephrol. 2018; 19(1):259-259. Disponible en: https://bmcnephrol.biomedcentral.com/ar ticles/10.1186/s12882-018-1055-6. Fecha de última visita: 15 de Septiembre del 2019.
Kovesdy C, Czira M E, Rudas A, Ujszaszzi A, Rosivall L, Novak M; et al. Body mass index, waist circumference and mortality in kidney transplant recipients. Am J Tranplant 2010;10: 2644-51.
Pastorino M, Marino C, Tripepi G, Zoccali C. Abdominal obesity and allcause and cardiovascular mortality in end-stage renal disease. J Am Coll Cardiol 2009;53:1265-72.
Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol 2002; 13:551-8.
Wisinger JR, Carlini RG, Rojas E, Bellorin-Font E. Bone disease after renal transplantation. Clin J Am Soc Nephrol. 2006;1:1300-13.
Kalantar-Zadeh K, Molnar MZ, Kovesdy CP, Mucsi I, Bunnapradist S. Management of mineral and bone disorder after kidney transplantation. Curr Opin Nephrol Hypertens 2012; 21:389-403.
Almond MK, Kwan JTC, Evans K, Cunningham J. Loss of regional bone mineral density in the first 12 months following renal transplantation. Nephron 1994;66:52-7.
Roe SD, Porter CJ, Godber IM, Hosking DJ, Cassidy MJ. Reduced bone mineral density in male renal transplant recipients: evidence for persisting hyperparathyroidism. Osteoporos Int 2005;16:142-8.
Rojas E, Carlini RG, Clesca P, Arminio A, Suniaga O, De Elguezabal K, et al. The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int 2003;63:1915-23.
Malhotra R, Deger SM, Salat H, Bian A, Stewart TG, Booker C; et al. Sarcopenic obesity definitions by body composition and mortality in the hemodialysis patients. J Renal Nutr 2017;27:84-90.
Yanishi M, Kimura Y, Tsukaguchi H, Koito Y, Taniguchi H, Mishima T; et al. Factors associated with the development of sarcopenia in kidney transplant recipients. Transplantat Proc 2017;49: 288-92.