2020, Número 3
Epidemia de peste porcina africana: estado actual
Carrillo C
Idioma: Español/Inglés
Referencias bibliográficas: 49
Paginas: 1-21
Archivo PDF: 329.13 Kb.
RESUMEN
La peste porcina africana es una infección viral no zoonótica que se transmite
por contacto y por garrapatas. Su notificación debe ser inmediata y es
obligatoria. Afecta a cerdos domésticos y silvestres con diversas manifestaciones
clínicas. En cerdos domésticos y jabalíes, la presentación clínica es
muy similar a la de peste porcina clásica (también conocida como cólera
porcino), por lo que es imprescindible una correcta toma de muestras y
un rápido envío al laboratorio para lograr un diagnóstico diferencial. Los
ciclos de infección se presentan de dos formas: a) selvática, en la que el virus
permanece en circulación durante largos períodos entre las garrapatas
y los animales persistentemente infectados, y b) epidémica, que involucra
a cerdos domésticos y jabalíes, pero raramente se encuentra en los vectores.
Los principales signos son fiebre, letargia, y muerte súbita en casos sobreagudos.
Si el animal resiste algunos días, se observan diarreas y vómitos
con fuertes hemorragias y emaciación de la piel. Los casos más moderados
dejan un cierto porcentaje de animales sobrevivientes que permanecen
como transmisores de la enfermedad. También pueden existir portadores
asintomáticos. No hay tratamiento ni vacunas, por lo que el control de la
enfermedad se fundamenta en una detección rápida y en el sacrificio obligatorio
de todos los individuos afectados y sospechosos de haber estado en
contacto con el virus. La peste porcina africana es endémica en África, Europa
del este, China y parte de Asia.
REFERENCIAS (EN ESTE ARTÍCULO)
OIE Terrestrial Manual Section 3.8. Chapter 3.8.1. African swine ferver (2019). Disponible en: https://www.oie.int/en/animal-health-in-the-world/ animal-diseases/african-swine-fever/
Tulman ER, Delhon GA, Ku BK, Rock DL. African swine fever virus. Curr Top Microbiol Immunol. 2009;328:43-87.
Tulman ER, Delhon GA, Ku BK, Rock DL. African swine fever virus. Lesser Known Large dsDNA Viruses. 2009;328;43-87.
Coggins L. African swine fever virus. Pathogenesis. Prog Med Virol 1974;18:48-63.
Global Alliance for Research in African swine Fever 2019. Gap analysis report. Disponible en: https://www.ars.usda.gov/GARA/
Bellini S, Rutili D, Guberti V. Preventive measures aimed at minimizing the risk of African swine fever virus spread in pig farming systems. Acta Vet Scand. 2016;58, article 82.
Zhou X, Li N, Luo Y, Liu Y, Miao F, Chen T, et al. Emergence of African swine fever in China, 2018. Transbound Emerg Dis. 2018;65:1482-4.
EFSA: Scientific Report. Reasearch gap analysis on African swine fever. Disponible en: https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j. efsa.2019.5811
Alonso C, Borca M, Dixon L, Revilla Y, Rodríguez F, Escribano JM. Ictv Report Consortium. ICTV virus taxonomy profile: Asfarviridae. J Gen Virol. 2018;99:613-4.
Dixon LK, Chapman DAG, Netherton CL, Upton C. African swine fever virus replication and genomics. Virus Res 2013;173:3-14.
Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122-30.
De Villiers EP, Gallardo C, Arias M, Da Silva M, Upton C, Martin R, et al. Phylogenomic analysis of 11 complete African swine fever virus genome sequences. Virology. 2010;400:128-36.
Nurmoja I, Petrov A, Breidenstein C, Zani L, Forth JH, Beer M, et al. Biological characterization of African swine fever virus genotype II strains from north- eastern Estonia in European wild boar. Transbound Emerg Dis. 2017;64, 2034–2041.
Montgomery RE. On a form of swine fever occurring in British East Africa (Kenya Colony). J Comp Pathol Ther. 1921;34:243-62.
Howey EB, O’Donnell Ferreira H, Borca MV, Arzt J. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Research. 2013;178(2013):328-39.
Post J, Weesendorp E, Montoya M, Loeffen WL. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunol. 2017;30:58-69.
Guinat C, Gogin A, Blome S, Keil G, Pollin R, Pfeiffer DU. Transmission routes of African swine fever virus to domestic pigs: current knowledge and future research directions. Vet Rec. 2016;178:262-7.
Olesen AS, Lohse L, Boklund A, Halasa T, Gallardo C, Pejsak Z, et al. Transmission of African swine fever virus from infected pigs by direct contact and aerosol routes. Vet Microbiol. 2017;211:92-102.
Olesen AS, Hansen MF, Rasmussen TB. Belsham GJ, Bødker R, Bøtner A. Survival and localization of African swine fever virus in stable flies (Stomoxys calcitrans) after feeding on viremic blood using a membrane feeder. Vet Microbiol. 2018;222:25-9.
Blome S, Gabriel C, Beer M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013;173:122-30.
Onisk DV, Borca MV, Kutish G, Kramer E, Irusta P, Rock DL. Passively transferred African swine fever virus-antibodies protect swine against lethal infection. Virology. 1994;198:350-4
Ruiz-Gonzalvo F, Caballero C, Martinez J, Carnero ME. Neutralization of African swine fever virus by sera from African swine fever-resistant pigs. Am J Vet Res. 1986;47:1858-62.
Ruiz-Gonzalvo F, Carnero ME, Caballero C, Martinez J. Inhibition of African swine fever infection in the presence of immune sera in vivo and in vitro. Am J Vet Res. 1986;47:1249-52.
Burmakina G, Malogolovkin A, Tulman ER, Zsak L, Delhon G, Diel DG, et al. African swine fever virus serotype-specific proteins are significant protective antigens for African swine fever. J Gen Virol. 2016;96:866-73.
Afonso CL, Neilan JG, Kutish GF, Rock DL. An African swine fever virus Bc1- 2 homolog, 5-HL, suppresses apoptotic cell death. J Virol. 1996;70:4858-63.
Afonso CL, Piccone ME, Zaffuto KM, Neilan J, Kutish GF, Lu Z, et al. African swine fever virus multigene family 360 and 530 genes affect host interferon response. J Virol. 2004;78(4):1858-64.
Basta S, Knoetig SM, Spagnuolo-Weaver M, Allan G, McCullough KC. Modulation of monocytic cell activity and virus susceptibility during differentiation into macrophages. J Immunol. 1999;162(7):3961-9.
Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, et al. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J. Virol. 1998;72:2881-9.
Borca MV, Kutish GF, Afonso CL, Irusta P, Carrillo C, Brun A, et al. An African swine fever virus gene with similarity to the T-lymphocyte surface-antigen Cd2 mediates hemadsorption. Virology. 1994;199:463-8.
Borca MV, Carrillo C, Zsak L, Laegreid WW, Kutish GF, Neilan JG, et al. Deletion of a CD2- like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. J Virol. 1998;72:2881-9.
Burrage TG, Lu, Z, Neilan JG, Rock DL, Zsak L. African swine fever virus multigene family 360 genes affect virus replication and generalization of infection in Ornithodoros porcinus ticks. J Virol. 2004;78:2445–53. En la brega DOI: http://dx.doi.org/10.22201/fmvz.24486760e.2020.3.930 Vol. 7 No. 3 Julio-Septiembre 2020 / 21 20 xxx http://veterinariamexico.unam.mx
Sanford B, Holinka LG, O’Donnell V, Krug PW, Carlson J, Alfano M, et al. Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 2016; 213:165.
Ramirez-Medina E, Vuono E, O’Donnell V, Holinka LG, Silva E, Rai A, et al. Differential effect of the deletion of african swine fever virus virulence-associated genes in the induction of attenuation of the highly virulent Georgia strain. Viruses. 2019;11.
O’Donnell V, Risatti GR, Holinka LG, Krug P, Carlson J, Velazquez-Salinas L, et al. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. J Virol. 2016;91.
Borca MV, Ramirez-Medina E, Silva E, Vuono E, Rai A, Pruitt S, et al. Development of a highly effective African swine fever virus vaccine by deletion of the I177L gene results in sterile immunity against the current epidemic Eurasia strain. J. Virol. 2019 [in press, Feb. 2020].
De Kock G, Robinson EM, Keppel JJG. DuToit PJ. Swine fever in South Africa. Onderstepoort J Vet Res Anim Ind. 1940;14:31-93.
Hammond RA, Detray DE. A recent case of African swine fever in Kenya, East Africa. J. Am. Vet. Med. Assoc. 126, 389-91.
Colgrove GS, Haelterman EO, Coggins L. Pathogenesis of African swine fever in young pigs. Am J Vet Res. 1969;30:1343-59.
Gallardo C, Soler A, Nieto R, Cano C, Pelayo V, Sanchez MA, et al. Experimental infection of domestic pigs with African swine fever virus Lithuania 2014 Genotype II Field Isolate. Transbound Emerg Dis. 2015;64:300-4.
Greig A. Pathogenesis of African swine fever in pigs naturally exposed to the disease. J Comp Pathol. 1972;82:73-9.
Mazur-Panasiuk N, mudzki J, Woniakowski G. African swine fever virus – Persistence in different environmental conditions and the possibility of its indirect transmission. J Vet Res. 2019;63:303-10.
OIE Manual for Diagnostic of Terrestrial Animal Diseases. Disponible en: http://www.oie.int/esp/maladies/fiches/
Mebus C, Arias M, Pineda JM, Tapiador J, House C, Sánchez-Vizcaíno JM. Survival of several porcine viruses in different Spanish dry-cured meat products. Food Chem. 1997;59:555-9.
Davies K, Goatley LC, Guinat C, Netherton CL, Gubbins S, Dixon LK, et al. Survival of African swine fever virus in excretions from pigs experimentally infected with the Georgia 2007/1 isolate. Transbound Emerg Dis. 2015;64:425-31.
Kalmar ID, Cay AB, Tignon M. Sensitivity of African swine fever virus (ASFV) to heat, alkalinity and peroxide treatment in presence or absence of porcine plasma. Vet Microbiol. 2018;219:144-9.
Petrini S, Feliziani F, Casciari C, Giammarioli M, Torresi C, De Mia GM. Survival of African swine fever virus (ASFV) in various traditional Italian dry-cured meat products. Prev Vet Med. 2019;162:126-30.
Plowright W, Parker J. The stability of African swine fever virus with particular reference to heat and pH inactivation. Arch Gesamte Virusforsch. 1967;21:383-402.
Niederwerder MC, Stoian AMM, Rowland RRR, Dritz SS, Petrovan V, Constance LA, et al. Infectious dose of African swine fever virus when consumed naturally in liquid or feed. Emerg Infect Dis. 2019;25:891-7.
Pietschmann J, Guinat C, Beer M, Pronin V, Tauscher K, Petrov A, et al. Course and transmission characteristics of oral low-dose infection of domestic pigs and European wild boar with a Caucasian African swine fever virus isolate. Arch Virol. 2015;160:1657-67.