2020, Número 10
<< Anterior Siguiente >>
Ginecol Obstet Mex 2020; 88 (10)
Conceptos básicos en inmunología de la reproducción: revisión narrativa de la bibliografía
Rodríguez-Purata J, Cervantes-Bravo E
Idioma: Español
Referencias bibliográficas: 41
Paginas: 692-699
Archivo PDF: 228.55 Kb.
RESUMEN
Antecedentes: La inmunología de la reproducción no es un área nueva: siempre ha
estado relacionada con el aborto recurrente y con la falla repetida en la implantación,
sobre todo en el contexto de una fertilización in vitro. Recientemente emergieron
nuevos conceptos importantes que los ginecoobstetras deben considerar.
Objetivo: Interrelacionar los conceptos básicos de inmunología, embriología y reproducción
asistida para comprender mejor lo que la primera puede resolver y lo que no.
Metodología: Estudio retrospectivo efectuado con base en la búsqueda electrónica,
llevada a cabo en febrero de 2020 en las bases de datos: PubMed y Google Scholar
con los siguientes términos (MeSH): abortion, spontaneous/immunology; embryo
implantation/immunology; HLA-c antigens/immunology; immune tolerance/immunology;
immunity, maternally-acquired/immunology; uterus/immunology; killer cells,
natural/immunology; placentation/immunology; receptors, kir/immunology; antigen
presentation/genetics; antigen presentation/immunology; maternal-fetal exchange/
genetics; maternal-fetal exchange/immunology.
Resultados: Se reunieron 289 artículos y se eliminaron 248 por no cumplir con
los criterios de inclusión; solo se analizaron 41. Los artículos identificados sirvieron
de base para actualizar la situación de la inmunología en el contexto de la medicina
de la reproducción. Durante el proceso se revisaron otros artículos que sirvieran de
soporte bibliográfico a los conceptos descritos en esta revisión.
Conclusiones: Debido al destacado interés en el estudio de la genética de los
embriones, la medicina de la reproducción se enfocó más en ella y dejó de lado a
la inmunología. Sin embargo, como la genética sigue sin poder explicar de manera
adecuada las fallas en la implantación, la inmunología de la reproducción vuelve a
cobrar impulso.
REFERENCIAS (EN ESTE ARTÍCULO)
Medawar BP, et al. Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 1953; 7: 320-37.
Clark DA. Controversies in reproductive immunology. Crit Rev Immunol. 1991;11 (3-4): 215-47. PMID: 1817556
Forman EJ, et al. In vitro fertilization with single euploid blastocyst transfer: a randomized controlled trial. Fertil Steril. 2013; 100 (1): 100-7.e1. doi:10.1016/j.fertnstert. 2013.02.056
Scott RT, et al. Blastocyst biopsy with comprehensive chromosome screening and fresh embryo transfer significantly increases in vitro fertilization implantation and delivery rates: a randomized controlled trial. Fertil Steril. 2013; 100 (3): 697-703. doi:10.1016/j.fertnstert.2013.04.035
Rodríguez-Purata J, et al. Reproductive outcome is optimized by genomic embryo screening, vitrification, and subsequent transfer into a prepared synchronous endometrium. J Assist Reprod Genet. 2016; 33 (3): 401-12. doi:10.1007/ s10815-016-0647-y
Munné S, et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019; 112 (6): 1071-79.e7. doi:10.1016/j.fertnstert.2019.07.1346
Fernandez N, et al. A critical review of the role of the major histocompatibility complex in fertilization, preimplantation development and feto-maternal interactions. Hum Reprod Update. 1999; 5 (3): 234-48. doi:10.1093/humupd/5.3.234
Wieczorek M, et al. Major histocompatibility complex (MHC) class I and MHC class II proteins: conformational plasticity in antigen presentation. Front Immunol. 2017; 8. doi:10.3389/fimmu.2017.00292
Taylor EB, et al. Natural killer cells and T lymphocytes in pregnancy and pre-eclampsia. Clin Sci. 2017; 131 (24): 2911-17. doi:10.1042/CS20171070
Caligiuri MA. Human natural killer cells. Blood. 2008; 112 (3): 461-69. doi:10.1182/blood-2007-09-077438
Claudio-Piedras F, et al. Evolución y filogenia de los linfocitos B. Rev Alerg México. 2016; 63 (2): 190. doi:10.29262/ ram.v63i2.150
Franasiak JM, Scott RT. Contribution of immunology to implantation failure of euploid embryos. Fertil Steril. 2017; 107 (6): 1279-83. doi:10.1016/j.fertnstert.2017.04.019
Kalu E, et al. Serial estimation of Th1:th2 cytokines profile in women undergoing in-vitro fertilization-embryo transfer. Am J Reprod Immunol 2008; 59 (3): 206-11. doi:10.1111/ j.1600-0897.2007.00565.x
Raghupathy R. Th 1-type immunity is incompatible with successful pregnancy. Immunol Today. 1997; 18 (10): 478- 82. doi:10.1016/S0167-5699(97)01127-4.
Del Prete G, et al. Human Th1 and Th2 cells: functional properties, mechanisms of regulation, and role in disease. Lab Investig J Tech Methods Pathol. 1994; 70 (3): 299-306. PMID: 8145524
Moffett A, et al. Maternal allo-recognition of the fetus. Fertil Steril. 2017; 107 (6): 1269-72. doi:10.1016/j.fertnstert. 2017.05.001
Moser G, et al. Human trophoblast invasion: new and unexpected routes and functions. Histochem Cell Biol. 2018; 150 (4): 361-70. doi:10.1007/s00418-018-1699-0
Moffett A, Colucci F. Uterine NK cells: active regulators at the maternal-fetal interface. J Clin Invest. 2014; 124 (5): 1872-79. doi:10.1172/JCI68107
King A, et al. Recognition of trophoblast HLA Class I molecules by decidual NK Cell Receptors—A Review. Placenta. 2000; 21: S81-S85. doi:10.1053/plac.1999.0520
Apps R, et al. Human leucocyte antigen (HLA) expression of primary trophoblast cells and placental cell lines, determined using single antigen beads to characterize allotype specificities of anti-HLA antibodies: HLA expression in the placenta. Immunology. 2009; 127 (1): 26-39. doi:10.1111/j.1365-2567.2008.03019.x
Parham P, Moffett A. Variable NK cell receptors and their MHC class I ligands in immunity, reproduction and human evolution. Nat Rev Immunol. 2013; 13 (2): 133-44. doi:10.1038/nri3370
Bélanger S, et al. Impaired natural killer cell self-education and “missing-self” responses in Ly49-deficient mice. Blood. 2012; 120 (3): 592-602. doi:10.1182/ blood-2012-02-408732
Kärre K, et al. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defense strategy. J Immunol Baltim 2005; 174 (11): 6566-69. PMID: 15905492
Vivier E, et al. Innate or adaptive immunity? The example of natural killer cells. Science. 2011; 331 (6013): 44-49. doi:10.1126/science.1198687
Koopman LA, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003; 198 (8): 1201-12. doi:10.1084/ jem.20030305
Horowitz A, et al. Genetic and environmental determinants of human NK cell diversity revealed by mass cytometry. Sci Transl Med. 2013; 5 (208): 208ra145-208ra145. doi:10.1126/scitranslmed.3006702
Cristiani CM, et al. Human NK cell subsets in pregnancy and disease: Toward a new biological complexity. Front Immunol. 2016; 7. doi:10.3389/fimmu.2016.00656
Moffett A, Shreeve N. First do no harm: uterine natural killer (NK) cells in assisted reproduction. Hum Reprod Oxf Engl. 2015; 30 (7): 1519-25. doi:10.1093/humrep/dev098
Dosiou C, Giudice LC. Natural killer cells in pregnancy and recurrent pregnancy loss: endocrine and immunologic perspectives. Endocr Rev. 2005; 26 (1): 44-62. doi:10.1210/ er.2003-0021
Trundley A, Moffett A. Human uterine leukocytes and pregnancy. Tissue Antigens. 2004; 63 (1): 1-12. doi:10.1111/ j.1399-0039.2004.00170.x
Raulet DH, et al. Regulation of the natural killer cell receptor repertoire. Annu Rev Immunol. 2001; 19: 291-330. doi:10.1146/annurev.immunol.19.1.291
Vilches C, Parham P. KIR: diverse, rapidly evolving receptors of innate and adaptive immunity. Annu Rev Immunol. 2002; 20: 217-51. doi:10.1146/annurev.immunol. 20.092501.134942
Moffett A, Colucci F. Co-evolution of NK receptors and HLA ligands in humans is driven by reproduction. Immunol Rev. 2015; 267 (1): 283-97. doi:10.1111/imr.12323
Alecsandru D, García-Velasco JA. Why natural killer cells are not enough: a further understanding of killer immunoglobulin-like receptor and human leukocyte antigen. Fertil Steril. 2017; 107 (6): 1273-78. doi:10.1016/j. fertnstert.2017.04.018
Uhrberg M, et al. Human diversity in killer cell inhibitory receptor genes. Immunity. 1997; 7 (6): 753-63. doi:10.1016/ s1074-7613(00)80394-5
Winter CC, et al. Direct binding and functional transfer of NK cell inhibitory receptors reveal novel patterns of HLA-C allotype recognition. J Immunol Baltim Md. 1998; 161 (2): 571-77. PMID 9670929
Hiby SE, et al. Maternal activating KIRs protect against human reproductive failure mediated by fetal HLA-C2. J Clin Invest. 2010; 120 (11): 4102-10. doi:10.1172/ JCI43998
Wang S, et al. Recurrent miscarriage is associated with a decline of decidual natural killer cells expressing killer cell immunoglobulin-like receptors specific for human leukocyte antigen C. J Obstet Gynaecol Res. 2014; 40 (5): 1288-95. doi:10.1111/jog.12329
Hiby SE, et al. Association of maternal killer-cell immunoglobulin- like receptors and parental HLA-C genotypes with recurrent miscarriage. Hum Reprod Oxf Engl. 2008; 23 (4): 972-76. doi:10.1093/humrep/den011
Savasi VM, et al. Maternal and fetal outcomes in oocyte donation pregnancies. Hum Reprod Update. 2016; 22 (5): 620-33. doi:10.1093/humupd/dmw012
Alecsandru D, et al. Maternal KIR haplotype influences live birth rate after double embryo transfer in IVF cycles in patients with recurrent miscarriages and implantation failure. Hum Reprod Oxf Engl. 2014; 29 (12): 2637-43. doi:10.1093/humrep/deu251