2020, Número 1
<< Anterior Siguiente >>
Invest Medicoquir 2020; 12 (1)
Eritropoyetina en la neuroprotección y su entrada al sistema nervioso a través de la cavidad nasal
Suárez BK, Fernández G, Rodríguez CY
Idioma: Español
Referencias bibliográficas: 43
Paginas:
Archivo PDF: 330.51 Kb.
RESUMEN
Las enfermedades neurodegenerativas y los accidentes cerebrovasculares, constituyen una causa importante de discapacidad y mortalidad a nivel mundial. Los tratamientos actuales no logran tratar estas enfermedades de manera exitosa. En los últimos años ha aumentado el desarrollo de compuestos neuroprotectores, que permiten alcanzar dicha meta en forma segura y eficaz, dentro de los cuales, podemos destacar los estudios con la administración intranasal de eritropoyetina humana recombinante con bajo contenido de á cido
siálico Se explica el efecto neuroprotector de la eritropoyetina humana
recombinante con bajo contenido de ácido siálico y sus posibles vías de acceso al sistema nervioso central a través de la cavidad nasal, la búsqueda de artículos científicos de revisión y de resultados experimentales de calidad y actualidad en relación al tema. Para este objetivo se realizó búsqueda en Medline, PubMed, Google; entre otros, en el período de septiembre a diciembre del año 2018. La neuroprotección es un propósito esencial en el tratamiento de condiciones neurológicas. En este campo, la eritropoyetina humana
recombinante con bajo contenido de ácido siálico ha despertado un interés particular a partir de las evidencias sobre su capacidad para inducir protección
y reparación del daño en poblaciones celulares del cerebro. La terapéutica administrada por vía intranasal es rápida y poco invasiva y logra acceder al sistema nervioso central a través de varios mecanismos que involucran las estructuras de la mucosa nasal, el fluido cerebroespinal y el sistema linfático. Las nuevas estrategias de tratamiento con la administración intranasal de prometedores neurofármacos como la eritropoyetina humana recombinante con eritropoyetina humana recombinante con bajo contenido de ácido siálicobajo contenido de ácido siálico ofrecen nuevas oportunidades para prevenir la progresión de los desórdenes neurodegenerativos, psiquiátricos y los episodios isquémicos.
REFERENCIAS (EN ESTE ARTÍCULO)
Mattio M. La eritropoyetina como agente neuroprotector: una potencial droga para el tratamiento de enfermedades de sistema nervioso central. [Tesis doctoral]. Universidad Nacional del Litoral; 2013.
Almaguer-Melian W, Mercerón-Martínez D, Pavón-Fuentes, N, Alberti-Amador E, Ledón -Martinez N, Delgado R, Ocaña S, Bergado-Rosado JA, Erythropoietin Promotes Neural Plasticity and Spatial Memory Recovery in Fimbria-Fornix–Lesioned Rats. Neurorehabilitation and Neural Repair. 2015; 1-10.
García JC. Neuroprotección en enfermedades neuro y heredo-degenerativas.1ª Ed. La Habana: Editoral OmniaScience; 2014;55-75.
Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey II WH. Delivery of Nerve Growth Factor to the Brain via the Olfactory Pathway. J Alzheimers Dis. 1998 Mar;1(1):35-44.
Kowsari R, Yazdian-Robati R, Marjan Razavi B, Pourtaji A, Gorbani M, Moghadam-Omranipour H, et al. Recognition and characterization of Erythropoietin binding-proteins in the brain of mice. Iran.J.Basic.Med.Sci. 2016;19:946-952.
Hernández CC, Burgos CF, Gajardo AH, Silva-Grecchi T, Gavilan J, Toledo JR, et al. Neuroprotective effects of erythropoietin on neurodegenerative and ischemic brain diseases: the role of erythropoietin receptor. NeuralRegen.Res. 2017;12(9):1381-1389.
Andrés A. Urrutia, Aqeela Afzal, Jacob Nelson, Olena Davinoff, Kenneeth W. Gross, Volker H, Haase. Porlyl-4-hydroxylase 2 and 3 coregulate murine erythropoietin in brain pericytes. Blood. 2016;128(21):2550-2560.
Almaguer-Melian W, Delgado-Ocana S, Pavón-Fuentes N, Ledón-Matinez N, Bergado-Rosado JA.EPO Induces Changes in Synaptic Transmission and Plasticity in the Dentate Gyrus of Rats. SYNAPSE. 2016;70:240–252.
Garzón F, Rodríguez Y, García JC, Rama R. Neuroprotective Effects of NeuroEPO Using an In Vitro Model of Stroke. Behav.Sci. 2018;8:26.
Maurice T, Mustafa MH, Desrumaux C , Keller E, Naert G, García-Barceló, MC, et al. Intranasal formulation of erythropoietin (EPO) showed potent protective activity against amyloid toxicity in the Aβ25-35 non-transgenic mouse model of Alzheimer’s disease. Journal of Psychopharmacology.2013;27(11):1044–1057
Ortega LM, Contreras G. El impacto clínico de los efectos fisiológicos de la eritropoyetina y de los agentes estimulantes de la eritropoyetina en la incidencia de malignidad, trombosis e hipertensión: más allá de la anemia. Nefrología. 2009;29(4):288-294.
Miskowiak K, Inkster B, Selvaraj S, Wise R, Goodwin GM, Harmer CJ. Erythropoietin Improves Mood and Modulates the Cognitive and Neural Processing of Emotion 3 Days Post Administration. Neuropsychopharmacology. 2008;33:611–618.
Chong ZZ, Shang CS, Mu Y, Cui Sh, Yao Q, Maiese K. Targeting erythropoietin for chronic neurodegenerative disease. Expert Opin. Targets. 2013;17(6):707-720.
Tazangi PE, Moosavi SM, Shabani M, Haghani M. Erythropoietin improves synaptic plasticity and memory deficits by decrease of the neurotransmitter release probability in the rat model of Alzheimer's disease. Pharmacol Biochem Behav. 2015;130:15–21.
Xionga Y, Mahmooda A, Luc D, Qua C, Kazmia H, Gousseva A, et al. Histological and functional outcomes after traumatic brain injury in mice null for the erythropoietin receptor in the central nervous system. Brain Res. 2008; vol 1230:247–257.
Armand-Ugón M, Aso E, Moreno J, Riera-Cordina M, Sánchez A, Vegas E, et al. Memory improvement in the AbPP/PS1 mouse model of familial Alzheimer's disease induced by carbamylated erythropoietin is accompanied by modulation of synaptic genes. J.AlzheimerDis. 2015;45:407-421.
Gao Y, Mengana Y, Cruz YR, Muñoz A, Testé IS, García JD, Wu Y, Rodríguez JC, Zhang C. Different expression patterns of ngb and epor in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of NeuroEPO for ischemic insults to the gerbil brain. J Histochem.Cytochem. 2011;59:214–27.
Wang X, Liu J, Zhu H, Tejima E, Tsuji K, Murata Y, et al. Effects of Ngb overexpression on acute brain injury and long-term outcomes after focal cerebral ischemia. Stroke. 2008;39:1869–74.
García- Rodríguez JC, Rama- Bretón R. NeuroEPO by Nasal Route as a Neuroprotective Therapy in Brain Ischemia in Acute Ischemic Stroke. Edi.INTECH. 2012;(3):59-78.
Maiese K. Regeneration in the nervous system with erythropoietin. Front Biosci (Landmark Ed). 2016;21(3):561–596. Disponible en: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632844/
Sun J, Martin JM, Vanderpoel V, Rchita K, Sumbria. The promises and challenges of Erythropoietin for treatment of Alzheimer´s Disease. NeuronMolecular Medicine. 2019. doi: org/10.1007/s12017-019-08524.
Li Y, Yang G, Jin, L, Yang H, Chan J, Chai G, et al. Erythropoietin attenuates Alzheimer-like memory impairments and pathological changes induced by amyloid β42 in mice. BrainResearch.2015;1618:159-167.
Tazangi PE, Shid SM, Shabani M, Haghni M. Erythropoietin improves synaptic plasticity and memory deficits by decrease of the neurotransmitter release probability in the rat model of Alzheimer's disease. Pharmacology Biochemistry and Behavior.2015;130:15-21.
Genc S, Zadeoglulari Z, Oner MG, Genc K, Digicaylioglu M. Intranasal erythropoietin therapy in nervous system disorders. Expert Opin. Drug Deliv. 2011;8(1):19-32.
Lochhead J, Thorne R. Intranasal delivery of biologics to the central nervous system. Advanced Drug Delivery Reviews. 2013;64:614–628.
Parra AL, Rodríguez JC.Nasal NeuroEPO could be a reliable choice for neuroprotective stroke treatment. Cent.Nerv.Syst.Agents.Med.Chem. 2013;12:60-68.
Santos-Morales O, Díaz-Machado A, Jiménez-Rodríguez D, Pomares-Iturralde Y, Festary-Casanovas T. Nasal administration of the neuroprotective candidate NeuroEPO to healthy volunteers: a randomized, parallel, open-label safety study. BMC Neurol. 2017 Jul 4;17(1):129. DOI 10.1186/s12883-017-0908-0
Cuban Public Registry of Clinical Trials. Safety and efficacy of NeuroEPO in patients with stroke. Phase I-II. Disponible en: http://registroclinico.sld.cu.sci-hub.io/ensayos/RPCEC00000185-Sp.
Gizurarson S. Animal models of intranasal drug delivery studies. ActaPharm.Nord.2 (2)1990.
Hernández P. La mucosa nasal como vía y fuente para la medicina regenerativa. Rev.CubanaHematol.Inmunol.Hemoter.2011;27(3).
Subirós N, García JC, González B, Sosa I, García GD. Evaluación histológica del efecto de la Eritropoyetina vía intranasal, sobre la muerte neuronal retardada en gerbos sometidos a isquemia cerebral transitoria. Estudio preliminar. 7º Congreso Virtual Hispanoamericano de Anatomía Patológica. 2005.
Chapman CD, Frey WH, Craft S, Lusine D, Hallschmid M.Intranasal Treatment of Central Nervous System Dysfunction in Humans.PharmaceuticalResearch. 2013;30(10):2475–2484.
Holscher CH. First clinical data of the neuroprotective effects of nasal insulin application in patients with Alzheimer’s disease. Alzheimer’s & Dementia. 2014;10:S33–S37.
Kamei N. Nose-to-Brain. Delivery of Peptide Drugs Enhanced by Coadministration of Cell-penetrating Peptides: Therapeutic Potential for Dementia. The Pharmaceutical Society of Japan. 2017;137(10):1247-1253.
Battaglia L, Panciani PP, Muntoni E, Capucchio MT, Biasibetti E, De Bonis P, et al. Lipid nanoparticles for intranasal administration: application to nose-to-brain delivery. Expert Opinion on Drug Delivery. 2018. doi: 10.1080/17425247.2018.1429401;
Merelli A, Czorny L, A Lazarowski. Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases. International Journal of Neuroscience. 2014. doi:10.3109/00207454.2014.98932.
Sood S, Jain K, Gowthamarajan K. Intranasal therapeutic strategies for management of Alzheimer’s disease. J.DrugTarget. 2014;22(4):279-294. doi: 10.3109/1061186X.2013.876644.
Bahadur S, Pathak K. Physicochemical and physiological considerations for efficient nose-to-brain targeting.Expert Opin. rug.Deliv. 2013;9(1):19-31.
García JC, Sosa I.The Nasal Route as a Potential Pathway for Delivery of Erythropoietin in the Treatment of Acute Ischemic Stroke in Humans. TheScientificWorldJOURNAL .2009;9:970–981.
Illum L. Nasal drug delivery possibilities, problems and solutions.Journal of Controlled Release. 2003; 87:187–198.
Scranton RA, Fletcher L, Sprague S, Jimenez DF, Digicaylioglu M. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One. 2013 Apr 13; 6(4): e18711.
Leah R Hanson, FreyW. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neuroscience. 2008;9(3):S5.
Jeffrey J. Lochhead (último), Robert G. Thorne. Advanced Drug Delivery Reviews, Intranasal delivery of biologics to the central nervous system [Internet]. Elsevier B.V. All rights reserved; 2013. Available from: www.elsevier.com/locate/add.