2020, Número 1
<< Anterior Siguiente >>
Correo Científico Médico 2020; 24 (1)
Mecanismos básicos de la epigenética
Bermúdez GAJ, Serrano GNB, Teruel GR, Sánchez SRJ, Sigcho RCR
Idioma: Español
Referencias bibliográficas: 32
Paginas:
Archivo PDF: 496.77 Kb.
RESUMEN
Se realizó una revisión de los mecanismos epigenéticos básicos, por medio de los cuales se producen cambios heredables en el fenotipo que no dependen de la secuencia del ADN. Estos mecanismos determinan la memoria de la diferenciación celular en su progenie, por lo que constituyen un mecanismo de control de la expresión de la información genética. La metilación del ADN y la modificación covalente de las histonas controlan la expresión de la información genética, mediante la interacción con proteínas específicas en una compleja red que involucra el llamado código de histonas. Esta regulación puede ser modificada por diversos factores, como la dieta y el ejercicio físico. El conocimiento de estos procesos ha permitido el empleo de terapéuticas epigenéticas para algunos tipos de cánceres y otras enfermedades.
REFERENCIAS (EN ESTE ARTÍCULO)
Venter C, Adams M, Myers E, Li P, Mural R, Sutton G. et al. The Sequence of the Human Genome. Science. 2001[citado02/11/2019]; 291 (5507): 1304-1351 Disponible en: https://science.sciencemag.org/content/291/5507/1304/tab-pdf
Levy S1, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP ,et al. The Diploid Genome Sequence of an Individual Human. PLoS Biol. 2007 [citado02/11/2019];5(10):254.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1964779/
Alberts B. Control of Gene Expression. En: Molecular Biology of the Cell. 6th ed. New York: Garland Science, Taylor & Francis Group; 2015. p. 369-438.
Blakey A, Litt MD. Epigenetic gene expression—an introduction. En: Huang S. Epigenetic Gene Expression and Regulation. USA: Elsevier; 2015.p.1-19.Disponible en: https://www.sciencedirect.com/science/article/pii/B9780127999586000019
Almouzni G, Cedar H. Maintenance of Epigenetic Information. Cold Spring HarbPerspect Biol. 2016 [citado 29 oct 2019] Disponible en: https://cshperspectives.cshlp.org/content/8/5/a019372.short
Calvanese V. Epigenetic regulation of developmental genes in embryonic stem cell differentiation. [Tesis]. España: Universidad Autónoma de Madrid; 2010. Disponible en: https://pdfs.semanticscholar.org/e696/8edf479e558210ad1217dcb09e2fb25ef384.pdf?_ga=2.36567328.1894433883.1573534494-859892191.1573534494
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Control of Gene Expression. En: Essential Cell Biology. 4theEd. New York: Garland Science, Taylor & Francis Group. 2014. p. 261-287.
Franco Vera L. Enfermedades epigenéticas: desde el cáncer hasta la sordera. Rev.R.Acad.Cienc.Exact.Fís.Nat.2009 [citado 15/12/ 2019]; 103(1):79-96. Disponble en: http://www.rac.es/ficheros/doc/00918.pdf
Tollefsbol T. Epigenetics: The New Science of Genetics. En: Handbook of Epigenetics. The New Molecular and Medical Genetics. España:Academic Press. Elsevier Inc. 2011. p. 1-8.
Miguel Soca P, Argüelles González I, Peña González M. Factores genéticos en la carcinogénesis mamaria. Rev Finlay. 2016 [citado 20/12/ 2019]; 6(4): 299-316. Disponible en: http://www.revfinlay.sld.cu/index.php/finlay/article/view/470
Feinberg A, Koldobskiy M, Göndör A. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet. 2016 [citado 19/12/2019];17(5):284–299.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4888057/
Weinhold B. Epigenetics the science of changes. Environ Health Perspect. 2006 [citado 19 /10/2019];114(3):160–167. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1392256/
Tollefsbol T. Epigenetics Epigenetics of Human Disease. En: Epigenetics in Human Disease. España: Academic Press. Elsevier Inc; 2012. p. 1-6.
Zoghbi H, Beaudet A. Epigenetics and Human Disease. Cold Spring Harb Perspect Biol. 2016 [citado 19/10/ 2019]. Disponible en: https://cshperspectives.cshlp.org/content/8/2/a019497.full
Reik W, Surani M. Germline and Pluripotent Stem Cells. Cold Spring HarbPerspect Biol. 2015 [citado 02/11/ 2019];7(11):a019422 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4632666/
Pollard T, Earnshaw W, Lippincott-Schwartz J, Johnson G. Cell Biology.3ra.ed.España.Editorial Elsevier2017.
Inbar Feigenberg M, Choufani S, Butcher DT, Roifman M, Weksberg R. Basic concepts of epigenetics. Fertility and Sterility.2013 [citado 20 /10/2019];99(3):2-9. Disponible en: https://www.clinicalkey.es/service/content/pdf/watermarked/1s2.0S0015028213001738.pdf?locale=es_ES&searchIndex=
Kim J, Samaranayake M, Pradhan S. Epigenetic mechanisms in mammals. Cell Mol Life Sci. 2009 [citado 20/10/ 2019];66: 96 – 612 Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780668/pdf/18_2008_Article_8432.pdf
Fernández de Castro I. Imprinting. EMEI.2009 [citado 22/10/2019]. Disponible en: https://epidemiologiamolecular.com/imprinting/
Haaf T. Imprinting and the Epigenetic Asymmetry between Parental Genomes. En: Meyers RA. Epigenetic Regulation and Epigenomics. Germany :Wiley-VCH Verlag & Co. KGa.A; 2012.
National Human Genome Research Institute. Genetic Imprinting. [Internet]. 2019 [citado 20 /10/2019]. Disponible en: https://www.genome.gov/genetics-glossary/Genetic-Imprinting
Dyce Gordon E. Impronta Genómica. Arch Med Cam. Jul 1999 [citado 20 /10/2019];3(4).Disponible en: scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02551999000400011
Tollefsbol T. Epigenetics in Human Disease. España:Academic Press. Elsevier Inc; 2012. Wilkins J, Ubeda F. Diseases Associated with Genomic Imprinting. Progress in Molecular Biology and Translational Science .2011[citado 17/02/2019];101: 401-445.Disponible en: https://www.sciencedirect.com/science/article/pii/B9780123876850000135
Allis D, Jenuwein T.The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016[citado 17 /02/2019]; 17(8):487-500.Disponible en: https://www.ncbi.nlm.nih.gov/pubmed/27346641
Li Y, Li J. Technical advances contribute to the study of genomic imprinting. PLoS Genet. 2019[citado 26/10/2019] ; 15(6): e100815. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586256/pdf/pgen.1008151.pdf
Nilsson E, Sadler-Riggleman I, Skinner M. Environmentally induced epigenetic transgenerational inheritance of disease. Environ Epigenet. 2018 [citado 26/10/ 2019];4(2). Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051467/
Ideraabdullah FY , Zeisel SH. Dietary Modulation of the Epigenome. Physiol Rev. 2018 [citado 20 /10/2019]; 98(2):667-695. Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5966714/
Peter Sarkies P. Molecular mechanisms of epigenetic inheritance: Possible evolutionary Implications. Seminars in Cell & Developmental Biology. 2020 [citado 02/03/2020];97:106-115. Disponible en: https://doi.org/10.1016/j.semcdb.2019.06.005
Heard E, Martienssen R. Transgenerational Epigenetic Inheritance: Myths and Mechanisms. Cell press. 2014 [citado 20/10/ 2019];157(1): 95-109.Disponible en: http://dx.doi.org/10.1016/j.cell.2014.02.045
Bishop K, Ferguson L. The Interaction between Epigenetics, Nutrition and the Development of Cancer. Nutrients. 2015 [citado 29/10/2018];7(2):922-947.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4344568/
Kim Y, Wang SU, Jiang YH. Epigenetic therapy of Prader–Willi syndrome. Transl Res. 2019 [citado 02/11/ 2019]; 208:105-118 .Disponible en: https://doi:10.1016/j.trsl.2019.02.012
Janssens Y, Wynendaele E, VandenBerghe W, De Spiegeleer B. Peptides as epigenetic modulators: therapeutic implications. Clin Epigenetics. 2019 [citado 20 /10/2019];11:101.Disponible en: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624906/