2020, Número S1
<< Anterior Siguiente >>
Acta Pediatr Mex 2020; 41 (S1)
Tratamiento nutricional en niños con COVID-19
López-Mejía L, Núñez-Barrera I, Bautista-Silva M, Vela-Amieva M, Guillén-López S
Idioma: Español
Referencias bibliográficas: 65
Paginas: 109-120
Archivo PDF: 429.01 Kb.
RESUMEN
El estado nutricional está asociado con la función pulmonar y juega un papel crítico en
el tratamiento del paciente pediátrico con COVID-19 que depende de apoyo ventilatorio.
Un inadecuado estado nutricional como la desnutrición perjudica severamente la
función pulmonar; por esto, administrar el adecuado soporte nutricio por vía enteral o
parenteral es de suma importancia para mejorar el pronóstico y la función pulmonar en
pacientes pediátricos. El soporte nutricional tiene como objetivo: cubrir el requerimiento
nutricional y modular la respuesta inflamatoria pulmonar y debe tomar en cuenta los
puntos de detectar, nutrir y monitorear con el fin de efectuar el proceso de cuidado
nutricio. El objetivo de este trabajo es exponer las pautas de cuidado nutricional en
pacientes pediátricos con COVID-19.
REFERENCIAS (EN ESTE ARTÍCULO)
Wadman M, et al. How does coronavirus kill? Clinicians trace a ferocious rampage through the body, from brain to toes. Science 2020. https://doi.org/10.1126/science.abc3208
Molloy EJ, Bearer CF. COVID-19 in children and altered inflammatory responses. Pediatr Res. 2020. https://doi. org/10.1038/s41390-020-0881-y
Bermúdez Ch, et al. Recomendaciones nutricionales de la Asociación Colombiana de Nutrición Clínica para pacientes hospitalizados con infección por SARS-CoV-2. Rev Nutr Clin Metab. 2020; 3 (1): XX. https://doi.org/10.35454/ rncm.v3n1.066
Barazzoni R, et al. ESPEN expert statements and practical guidance for nutritional management of individuals with SARS-CoV-2 infection. Clin Nutr. 2020. https://doi. org/10.1016/j.clnu.2020.03.022
Cárdenas D, et al. Declaración de Cartagena. Declaración Internacional sobre el derecho al cuidado nutricional y la lucha contra la malnutrición. Nutr Hosp. 2019; 36 (4): 974-98. http//dx.doi.org/10.20960/NH.02701
Mehta NM, et al. Guidelines for the provision and assessment of nutrition support therapy in the pediatric critically ill patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. JPEN J Parenter Enteral Nutr. 2017; 41 (5): 706-42. https:// doi.org/10.1177/0148607117711387
World Health Organization. Training Course on Child Growth Assessment. Geneva, WHO, 2008.
Valla FV, et al. Nutritional status deterioration occurs frequently during children’s ICU stay. Pediatr Crit Care Med. 2019; 20 (8): 714-21. https://doi.org.10.1097/PCC. 0000000000001979.
Hecht C, et al. Disease associated malnutrition correlates with length of hospital stay in children. Clin Nutr. 2015; 34: 53-9. https://doi.org/10.1016/j.clnu.2014.01.003.
Shakir A. Quac stick in the assessment of protein-calorie malnutrition in Baghdad. Lancet. 1973; 1(7806): 762-3. https://doi.org/10.1016/s0140-6736(73)92142-9.
Karagiozoglou-Lampoudi T, et al. Computer-based malnutrition risk calculation may enhance the ability to identify pediatric patients at malnutrition-related risk for unfavorable outcome. JPEN J Parenter Enteral Nutr. 2015; 39 (4): 418-25. https://doi.org/10.1177/0148607114529161
Gerasimidis K, et al. Performance of the novel Paediatric Yorkhill Malnutrition Score (PYMS) in hospital practice. Clin Nutr. 2011; 30: 430-5. https://doi.org/10.1016/j. clnu.2011.01.015
Maciel JRV, et al. STRONGkids validation: tool accuracy. J Pediatr (Rio J). 2019; S0021-7557(18)31002-7. https://doi. org/10.1016/j.jped.2018.12.012
McCarthy H, et al. The development and evaluation of the Screening Tool for Assessment of Malnutrition in Paediat- rics (STAMP) for use by healthcare staff. J Hum Nutr Diet. 2012; 25 (4): 311-18. https://doi.org/10.1111/j.1365- 277X.2012.01234.x
White M, et al. Simple Nutrition Screening Tool for Pediatric Inpatients. JPEN J Parenteral Enteral Nutr. 2016; 40 (3): 392-9. https://doi.org/10.1177/0148607114544321
Beser OF, et al. Evaluation of malnutrition development risk in hospitalized children. Nutrition. 2018; 48: 40-47. https://doi.org.10.1016/j.nut.2017.10.020
Simpson JR, et al. Development, reliability, and validity testing of Toddler NutriSTEP: a nutrition risk screening questionnaire for children 18-35 months of age. Appl Physiol Nutr Metab. 2015;40(9):877-86. https://doi. org/10.1139/apnm-2015-0048
López Martínez J, et al. Nutrición artificial en la insuficiencia respiratoria. Nutr Hosp. 2005;20 (2):28-30.
Tyles R, et al. Value of nutrition support therapy: impact on clinical and economic outcomes in the United States. JPEN J Parenter Enteral Nutr. 2020;44(3):395-406. https://doi.org/10.1002/jpen.1768
Patel JJ, Rice T, Heyland DK. Safety and outcomes of early enteral nutrition in circulatory shock. JPEN J Parenter Enteral Nutr. 2020;10.1002/jpen.1793. https://doi. org/10.1002/jpen.1793
Singer P, et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin Nutr. 2019;38(1):48-79. https:// doi.org/10.1016/j.clnu.2018.08.037
Laviano A, Koverech A, Zanetti M. Nutrition support in the time of SARS-CoV-2 (COVID-19). Nutrition. 2020;110834. https://doi.org/10.1016/j.nut.2020.110834
Fineman LD, LaBrecque MA, Shih MC, Curley MA. Prone positioning can be safely performed in critically ill infants and children. Pediatr Crit Care Med. 2006;7(5):413–22. https://doi.org/ 10.1097/01.PCC.0000235263.86365.B3
Nutrition Management for Critically and Acutely Unwell Hospitalized Patients with COVID-19 in Australia and New Zealand. Tomado en: https://www.auspen.org.au/ auspen-news/2020/4/6/covid-19-information
Zamberlan P, et al. Nutrition therapy in a pediatric intensive care unit: indications, monitoring, and complications. JPEN J Parenter Enteral Nutr. 2011;35(4):523‐529. https://doi.org.10.1177/0148607110386610
Jotterand Chaparro C, et al. Estimation of Resting Energy Expenditure Using Predictive Equations in Critically Ill Children: Results of a Systematic Review, J Parenter Enteral Nutr. 2018; 42(6):976-86. https://doi.org/10.1002/ jpen.1146
Jotterand Chaparro C, Tet al. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children. J Pediatr. 2017;184:220–26. https://doi.org/10.1016/j. jpeds.2016.12.063
Li XY, et al. Zhonghua Jie He He Hu Xi Za Zhi. 2 0 2 0 ; 4 3 ( 4 ) : 2 7 7 – 8 1 . h t t p s : / / d o i . o r g / 1 0 . 3 7 6 0 / cma.j.cn112147-20200224-00159
Briassoulis G, et al. Energy expenditure in critically ill children. Crit Care Med. 2000;28(4):1166–72. https://doi. org/10.1097/00003246-200004000-00042
Ludvigsson JF. Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults. Acta Paediatr. 2020;10.1111/apa.15270. https:// doi.org/10.1111/apa.15270
Walsh MC, Chwals WJ. Total parenteral nutrition-associated hyperglycemia correlates with prolonged mechanical ventilation and hospital stay in septic infants. J Pediatr Surg. 2006; 41: 239-44. https://doi.org/10.1016/j.jpedsurg.2005.10.045
Bonet Saris A, et al. Recomendaciones para el soporte nutricional y metabólico especializado del paciente crítico. Actualización. Consenso SEMICYUC-SENPE: requerimientos de macronutrientes y micronutrientes. Med Intensiva. 2011;35(1):17–21. https://doi.org/10.1016/ S0210-5691(11)70004-3
Patkova A, et al. Energy, protein, carbohydrate, and lipid intakes and their effects on morbidity and mortality in critically ill adult patients: a systematic review. American Society for Nutrition. Adv Nutr. 2017;8(4):624–34. https:// doi.org/10.3945/an.117.015172
Heyland DK, et al. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr. 2003;27(5):355–73. https://doi.org/10.1177/0148607103027005355
Duarte-Díaz MM, et al. Nutrición y función respiratoria. Acta Medica. 2003;11(1):26-37.
Wilson B, Typpo K. Nutrition: A primary therapy in pediatric acute respiratory distress syndrome. Front Pediatr. 2016; 13 (4): 108. https://doi.org/10.3389/fped.2016.00108
Mehta NM, et al. ASPEN Clinical guidelines: nutrition support of the critically ill child. JPEN J Parenter Enteral Nutr. 2009; 33 (3): 260-76. http://doi. org/10.1177/0148607109333114
Oliveira GP, et al. Exogenous Glutamine in Respiratory Diseases: Myth or Reality? Nutrients. 2016;8(2):76. https:// doi.org/10.3390/nu8020076
Cruzat V, et al. Glutamine: Metabolism and Immune Function, Supplementation and Clinical Translation. Nutrients. 2018;10(11):1564. https://doi.org/doi:10.3390/ nu10111564
Oliveira GP, et al. Glutamine therapy reduces inflammation and extracellular trap release in experimental acute respiratory distress syndrome of pulmonary origin. Nutrients. 2019; 11 (4): 831. https://doi.org/10.3390/nu11040831
Iyer R, Bansal A. What do we know about optimal nutritional strategies in children with pediatric acute respiratory distress syndrome? Ann Transl Med. 2019;7(19):510. https:// doi.org/10.21037/atm.2019.08.25
Jacobs BR, et al. Nutritional immunomodulation in critically ill children with acute lung injury: feasibility and impact on circulating biomarkers. Pediatr Crit Care Med. 2013;14(1):e45–56. https://doi.org/10.1097/ PCC.0b013e31827124f3
Glenn JO, Wischmeyer PE. Enteral fish oil in critical illness: perspectives and systematic review. Curr Opin Clin Nutr Metab Care. 2014;17(2):116-23. https://doi.org/10.1097/ MCO.0000000000000039
García de Acilu M, et al. The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review. Biomed Res Int. 2015; 2015:653750. https://doi.org/10.1155/2015/653750
Dao DT, et al. Assessment of micronutrient status in critically ill children: Challenges and opportunities. Nutrients. 2017;9(11):E1185. https://doi.org/10.3390/nu9111185
Valla FV, et al. Multiple micronutrient plasma level changes are related to oxidative stress intensity in critically ill children. Pediatr Crit Care Med. 2018;19(9): e455-63. https:// doi.org/10.1097/PCC.0000000000001626
Xu Z, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420-22. https://doi.org/10.1016/S2213- 2600(20)30076-X
Valentine SL, et al. Nonpulmonary treatments for pediatric acute respiratory distress syndrome: proceedings from the Pediatric Acute Lung Injury Consensus Conference. Pediatr Crit Care Med. 2015;16(5): S7385. https://doi. org/10.1097/PCC.0000000000000435
Timoneda J, et al. Vitamin A deficiency and the lung. Nutrients. 2018;10(9): E1132. https://doi.org/10.3390/ nu10091132
Zhang L, Liu Y. Potential interventions for novel coronavirus in China: A systematic review. J Med Virol. 2020;92(5):479:90. https://doi.org/10.1002/jmv.25707
Hemilä H. Vitamin C and SARS coronavirus. J Antimicrob Chemother. 2003;52(6):1049–50. https://dpi.org/10.1093/ jac/dkh002
Carr AC. A new clinical trial to test high-dose vitamin C in patients with COVID-19. Crit Care. 2020;24(1):133. https:// doi.org/10.1186/s13054-020-02851-4
Tian Y, Rong L. Letter: Covid-19 and vitamin D-authors' reply. Aliment Pharmacol Ther. 2020;10.1111/apt.15764. https:// doi.org/10.1111/apt.15764
McCartney DM, Byrne DG. Optimisation of Vitamin D Status for Enhanced Immuno-protection Against Covid-19. Ir Med J. 2020;113(4):58.
Erol N , e t a l. T he p rotection p otential o f a ntioxidant vitamins against acute respiratory distress syndrome: a rat trial. Inflammation. 2019;42(5):1585-94. https:// doi.org/10.1007/s10753-019-01020-2
Mahmoodpoor A , et al. The ef fec t of intrave - nous selenium on oxidative stress in critically ill patients with acute respiratory distress syndrome. Immunol Invest. 2019;48(2):147-59. https://doi.org/10.1080/088 20139.2018.1496098
Leite HP, et al. Increased plasma selenium is associated with better outcomes in children with systemic inflammation. Nutrition. 2015;31(3):485-90. https://doi. org/10.1016/j.nut.2014.09.008
Koekkoek WA, van Zanten AR. Antioxidant vitamins and trace elements in critical illness. Nutr Clin Pract. 2016; 31(4): 457-74. https://doi. org/10.1177/0884533616653832
Read SA, et al. The Role of Zinc in Antiviral Immunity. Adv Nutr. 2019;10(4):696–710. https://doi.org/10.1093/ advances/nmz013
Kelekçi S, et al. The relationships between clinical outcome and the levels of total antioxidant capacity (TAC) and coenzyme Q (CoQ 10) in children with pandemic influenza (H 1 N1) and seasonal flu. Eur Rev Med Pharmacol Sci. 2012;16(8):1033–38
Jochum F, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin Nutr. 2018; 37 (6): 2344-53. https://doi. org/10.1016/j.clnu.2018.06.948
Joosten K, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin Nutr. 2018;37(6):2309–14. https://doi.org/10.1016/j. clnu.2018.06.944
van Goudoever JB, Carnielli V, Darmaun D, Sainz de Pipaon M, ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin Nutr. 2018;37(6):2315–23. https://doi. org/10.1016/j.clnu.2018.06.945
Mesotten D, Joosten K, van Kempen A, Verbruggen S, ESPGHAN/ESPEN/ESPR/CSPEN working group on pediatric parenteral nutrition. ESPGHAN/ESPEN/ESPR/ CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin Nutr. 2018; 37(6):2337–43. https:// doi.org/10.1016/j.clnu.2018.06.947
Lapillonne A, Fidler Mis N, Goulet O, van den Akker CH, Wu J, Koletzko B, et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin Nutr. 2018; 37(6):2324–36. https://doi.org/10.1016/j.clnu.2018.06.946