2020, Número S2
<< Anterior Siguiente >>
Rev Mex Traspl 2020; 9 (S2)
Biología del SARS-CoV-2
Fernández-Camargo DA, Morales-Buenrostro LE
Idioma: Español
Referencias bibliográficas: 58
Paginas: 139-148
Archivo PDF: 358.10 Kb.
RESUMEN
Los coronavirus son una familia de virus que en años recientes han causado brotes epidémicos: el SARS en 2002, el MERS en 2012 y actualmente la pandemia de COVID-19. El SARS-CoV-2 es un nuevo coronavirus que se caracteriza por ser un virus con envoltura y RNA que proviene de los murciélagos y se transmite principalmente a través de gotas respiratorias, causando una infección de vías aéreas de gravedad variable. La respuesta inmune es fundamental para el control efectivo de la infección; sin embargo, una respuesta mal regulada puede favorecer un mayor daño pulmonar y, por consiguiente, una mayor mortalidad de los pacientes. Esta revisión pretende mostrar las características del SARS-CoV-2 desde un punto de vista biológico, así como su interacción con el sistema inmune a través del cual se produce infección o enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet [Internet]. 2020; 395 (10223): 514-523. Available in: http://dx.doi.org/10.1016/S0140-6736(20)30154-9
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol. 2020; 92 (4): 418-423.
Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature [Internet]. 2020; 579 (7798): 270-273. Available in: http://dx.doi.org/10.1038/s41586-020-2012-7.
Wang Y, Wang Y, Chen Y, Qin Q. Unique epidemiological and clinical features of the emerging 2019 novel coronavirus pneumonia (COVID-19) implicate special control measures. J Med Virol [Internet]. 2020. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32134116
Wu F, Zhao S, Yu B, Chen YM, Wang W, Song ZG et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020; 579 (7798): 265-269.
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497-506.
Perlman S, Mcintosh K. 155-Coronaviruses, Including severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS) [Internet]. 9th ed. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. Elsevier Inc.; 2020. pp. 2072-2080.e3. Available in: https://doi.org/10.1016/B978-0-323-48255-4.00155-7.
De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14 (8): 523-534.
Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell [Internet]. 2020; 1-12. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32155444
Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367 (6483): 1260-1263.
Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Res [Internet]. 2020; 176: 104742. Available in: https://doi.org/10.1016/j.antiviral.2020.104742
Hendrickson CM, Matthay MA. Viral pathogens and acute lung injury: Investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin Respir Crit Care Med. 2013; 34 (4): 475-486.
Chen J, Subbarao K. The Immunobiology of SARS. Annu Rev Immunol. 2007; 25 (1): 443-472.
Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11 (8): 875-879.
Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific J allergy Immunol [Internet]. 2020. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32105090
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271-280.e8.
Pan XW, Xu D, Zhang H, Zhou W, Wang LH, Cui XG. Identification of a potential mechanism of acute kidney injury during the COVID-19 outbreak: a study based on single-cell transcriptome analysis. Intensive Care Med. 2020; 1‐3. doi: 10.1007/s00134-020-06026-1.
Cao Y, Li L, Feng Z, Wan S, Huang P, Sun X et al. Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov [Internet]. 2020; 6 (1): 4-7. Available in: http://dx.doi.org/10.1038/s41421-020-0147-1
Perlman S, Netland J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7 (6): 439-450.
Backer JA, Klinkenberg D, Wallinga J. Incubation period of 2019 novel coronavirus (2019-nCoV) infections among travellers from Wuhan, China, 20-28 January 2020. Euro Surveill. 2020; 25 (5): 1-6.
Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR et al. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med [Internet]. 2020. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32150748
Jiang X, Rayner S, Luo MH. Does SARS-CoV-2 has a longer incubation period than SARS and MERS? J Med Virol. 2020; 92 (5): 476‐478.
Ong SWX, Tan YK, Chia PY, Lee TH, Ng OT, Wong MSY et al. Air, surface environmental, and personal protective equipment contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from a symptomatic patient. JAMA [Internet]. 2020; 323 (16): 1610‐1612. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32129805
Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet [Internet]. 2020; 395 (10226): 809-815. Available in: http://dx.doi.org/10.1016/S0140-6736 (20)30360-3
Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Di Napoli R. Features, evaluation and treatment coronavirus (COVID-19). StatPearls [Internet]. 2020; 1-17. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32150360
Ferguson NM, Laydon D, Nedjati-Gilani G, Imai N, Ainslie K, Baguelin M et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. London, UK: Imperial College London; 2020. Available in: https://doi.org/10.25561/77482
Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N Engl J Med. 2020; 382 (10): 970-971.
van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN et al. Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med [Internet]. 2020; 382 (16): 1564‐1567. Available in: https://doi.org/10.1056/NEJMc2004973
Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P et al. Coronavirus infections and immune responses. J Med Virol. 2020; 92 (4): 424-432.
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436 (7047): 112-116.
Hofmann H, Pyrc K, Van Der Hoek L, Geier M, Berkhout B, Pöhlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci U S A. 2005; 102 (22): 7988-7993.
Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med [Internet]. 2020; 382 (18): 1708‐1720. Available in: http://www.ncbi.nlm.nih.gov/pubmed/32109013
Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? Lancet Respir Med [Internet]. 2020; 8 (4): e21. Available in: http://dx.doi.org/10.1016/S2213-2600 (20)30116-8
Esler M, Esler D. Can angiotensin receptor-blocking drugs perhaps be harmful in the COVID-19 pandemic? J Hypertens [Internet]. 2020; 38: 1-2. Available in: https://journals.lww.com/jhypertension
Gurwitz D. Angiotensin receptor blockers as tentative SARS-CoV-2 therapeutics. Drug Dev Res. 2020; 10.1002/ddr.21656. doi:10.1002/ddr.21656.
Vaduganathan M, Vardeny O, Michel T, McMurray JJV, Pfeffer MA, Solomon SD. Renin-angiotensin-aldosterone system inhibitors in patients with COVID-19. N Engl J Med. 2020; 382 (17): 1653-1659. doi: 10.1056/NEJMsr2005760.
Khan A, Benthin C, Zeno B, Albertson TE, Boyd J, Christie JD et al. A pilot clinical trial of recombinant human angiotensin-converting enzyme 2 in acute respiratory distress syndrome. Crit Care. 2017; 21 (1): 234.
Ishiyama Y, Gallagher PE, Averill DB, Tallant EA, Brosnihan KB, Ferrario CM. Upregulation of angiotensin-converting enzyme 2 after myocardial infarction by blockade of angiotensin II receptors. Hypertension. 2004; 43 (5): 970-976.
Jessup JA, Gallagher PE, Averill DB, Brosnihan KB, Tallant EA, Chappell MC et al. Effect of angiotensin II blockade on a new congenic model of hypertension derived from transgenic Ren-2 rats. Am J Physiol Hear Circ Physiol. 2006; 291 (5): 2166-2172.
Hamming I, Van Goor H, Turner AJ, Rushworth CA, Michaud AA, Corvol P et al. Differential regulation of renal angiotensin-converting enzyme (ACE) and ACE2 during ACE inhibition and dietary sodium restriction in healthy rats. Exp Physiol. 2008; 93 (5): 631-638.
Furuhashi M, Moniwa N, Mita T, Fuseya T, Ishimura S, Ohno K et al. Urinary angiotensin-converting enzyme 2 in hypertensive patients may be increased by olmesartan, an angiotensin II receptor blocker. Am J Hypertens. 2015; 28 (1): 15-21.
Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM. Effects of captopril related to increased levels of prostacyclin and angiotensin- (1-7) in essential hypertension. J Hypertens [Internet]. 1996; 14 (6): 799-805. Available in: https://journals.lww.com/jhypertension/Fulltext/1996/06000/Effects_of_captopril_related_to_increased_levels.17.aspx
Bozkurt B, Kovacs R, Harrington B. Joint HFSA/ACC/AHA Statement addresses concerns re: using RAAS antagonists in COVID-19. J Card Fail [Internet]. 2020; 26 (5): 370. Available in: https://www.acc.org/latest-in-cardiology/articles/2020/03/17/08/59/hfsa-acc-aha-statement-addresses-concerns-re-using-raas-antagonists-in-covid-19
Su H, Yang M, Wan C, Yi LX, Tang F, Zhu HY et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020. doi: 10.1016/j.kint.2020.04.003.
Li Q, Cheng Q, Zhao Z, Zeng L, Wei G, Li C et al. Two renal transplant recipients: case report. 2020.
Kissling S, Rotman S, Gerber C, Halfon M, Lamoth F, Comte D et al. Collapsing glomerulopathy in a COVID-19 patient. Kidney Int [Internet]. 2020. Available in: https://doi.org/10.1016/j.kint.2020.04.006
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017; 39 (5): 529-539.
Rokni M, Ghasemi V, Tavakoli Z. Immune responses and pathogenesis of SARS-CoV-2 during an outbreak in Iran: Comparison with SARS and MERS. Rev Med Virol. 2020; 30 (3): e2107.
Ahmadpoor P, Rostaing L. Why the immune system fails to mount an adaptive immune response to a COVID-19 infection. Transpl Int. 2020; 13-14.
Zhou G, Zhao Q. Perspectives on therapeutic neutralizing antibodies against the Novel Coronavirus SARS-CoV-2. Int J Biol Sci. 2020; 16 (10): 1718-1723.
Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa248.
Zhao J, Yuan Q, Wang H, Liu W, Liao X, Su Y et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis. 2020. doi: 10.1093/cid/ciaa344.
Wu LP, Wang NC, Chang YH, Tian XY, Na DY, Zhang LY et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007; 13 (10): 1562-1564.
Liu W, Fontanet A, Zhang P, Zhan L, Xin Z, Baril L et al. Two‐year prospective study of the humoral immune response of patients with severe acute respiratory syndrome. J Infect Dis. 2006; 193 (6): 792-795.
Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight. 2019; 4 (4): e123158.
Peiris JSM, Chu CM, Cheng VCC, Chan KS, Hung IFN, Poon LLM et al. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet. 2003; 361 (9371): 1767-172.
Zhang L, Zhang F, Yu W, He T, Yu J, Yi CE et al. Antibody responses against SARS coronavirus are correlated with disease outcome of infected individuals. J Med Virol [Internet]. 2006; 78 (1): 1-8. Available in: https://doi.org/10.1002/jmv.20499
Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virol Sin [Internet]. 2020. Available in: https://doi.org/10.1007/s12250-020-00207-4