2020, Número 4
<< Anterior Siguiente >>
salud publica mex 2020; 62 (4)
Desarrollo oogénico y ciclo gonotrófico de Aedes aegypti y Aedes albopictus en laboratorio
Casas-Martínez M, Tamayo-Domínguez R, Bond-Compeán JG, Rojas JC, Weber M, Ulloa-García A
Idioma: Ingles.
Referencias bibliográficas: 36
Paginas: 372-378
Archivo PDF: 421.67 Kb.
RESUMEN
Objetivo. Determinar el tiempo de desarrollo oogénico y
del ciclo gonotrófico de
Aedes aegypti y
Aedes albopictus en
laboratorio.
Material y métodos. Hembras de Ae. aegypti
y
Ae. albopictus alimentadas con sangre fueron disecadas
cada cuatro horas para determinar el estado de desarrollo
folicular, según los estadios de Christophers.
Resultados.
El tiempo mínimo de maduración del oocito en
Ae. aegypti
y
Ae. albopictus fue de 64-82 h y 52-64 h post-alimentación,
respectivamente. El ciclo gonotrófico de
Ae. aegypti(3.7-4.2
d) fue mayor que el de
Ae. albopictus (3.2-3.7 d). La longitud
folicular presentó diferencias significativas entre las especies
en los estadios de Christophers 2” y 5, mientras que la amplitud
folicular fue diferente entre ambos mosquitos en los
estadios 2”, 3 y 4.
Conclusiones. El estudio proporcionó
nueva evidencia sobre la estrategia reproductiva de las hembras
de
Ae. aegypti y
Ae. albopictus que coexisten en la región
neotropical de México.
REFERENCIAS (EN ESTE ARTÍCULO)
Weaver SC, Reisen WK. Present and future arboviral threats. Antiviral Res. 2010;85(2):328-45. https://doi.org/10.1016/j.antiviral.2009.10.008
Ioos S, Mallet HP, Leparc Goffart I, Gauthier V, Cardoso T, Herida M. Current Zika virus epidemiology and recent epidemics. Med Mal Infect. 2014;44(7):302-7. https://doi.org/10.1093/infdis/jix451
Defoliart GR, Watts DM, Grimstad PR. Changing patterns in mosquitoborne arboviruses. J Am Mosq Control Assoc. 1986;2(4):437-55.
Halstead SB. Epidemiology. In: Halstead SB. Dengue. Tropical Medicine: Science and Practice Volume 5. London: Imperial Collage Press, 2008:75- 122. https://doi.org/10.1142/9781848162297_0003
Hawley WA. The biology of Aedes albopictus. J Am Mosq Control Assoc. 1988;1:1-39.
Braks MAH, Honório NA, Lounibos LP, Lourenco-De-Oliveira R, Juliano SA. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazi. Ann Entomol Soc Am. 2004;97(1):130-9. https://doi.org/10.1603/0013- 8746(2004)097[0130:ICBTIS]2.0.CO;2
Scott TW, Chow E, Strickman D, Kittayapong P, Wirtz RA, Lorenz LH, Edman JD. Blood-feeding patterns of Aedes aegypti (Diptera: Culicidae) collected in a rural Thai village. J Med Entomol. 1993;30(5):922-7. https:// doi.org/10.1093/jmedent/30.5.922
Niebylski ML, Savage HM, Nasci RS, Craig GB Jr. Blood hosts of Aedes albopictus in the United States. J Am Mosq Control Assoc. 1994;10(3):447-50.
Casas-Martínez M, Torres-Estrada JL. First Evidence of Aedes albopictus (Skuse) in Southern Chiapas, Mexico. Emerg Infect Dis. 2003;9(5):606-7. https://doi.org/10.3201/eid0905.020678
Casas-Martínez M, Orozco-Bonilla A, Muñoz-Reyes M, Ulloa-García A, Bond JG, Valle-Mora J, et al. A new tent trap for monitoring the daily activity of Aedes aegypti and Aedes albopictus. J Vector Ecol. 2013;38(2):277- 88. https://doi.org/10.1111/j.1948-7134.2013.12041.x
Pant CP, Yasuno M. Field studies on the gonotrophic cycle of Aedes aegypti in Bangkok, Thailand. J Med Entomol. 1973;25;10(2):219-23. https:// doi.org/10.1093/jmedent/10.2.219
Klowden MJ, Briegel H. Mosquito gonotrophic cycle and multiple feeding potential: contrasts between Anopheles and Aedes (Diptera: Culicidae). J Med Entomol. 1994;31(4):618-22. https://doi.org/10.1093/ jmedent/31.4.618
Lima-Camara TN, Honório NA, Lourenco-de-Oliveira R. Parity and ovarian development of Aedes aegypti and Ae. albopictus (Diptera: Culicidae) in metropolitan Rio de Janeiro. J Vector Ecol. 2007;32(1):34-40. https://doi.org/10.3376/1081-1710(2007)32[34:PAODOA]2.0.CO;2
Savage HM, Smith GC. Aedes albopictus y Aedes aegypti en las Américas: implicaciones para la transmisión de arbovirus e identificación de hembras adultas dañadas. Bol Oficina Sanit Panam. 1995;118(6):473-7. http://iris. paho.org/xmlui/handle/123456789/15585
Centers for Disease Control and Prevention. Biología y control del Aedes aegypti. Atlanta: CDC, 1980 [cited March 1, 2011] Available from: https://stacks.cdc.gov/view/cdc/7579
Clements AN. The biology of mosquitoes, Vol. 1: Development, nutrition and reproduction. New York: CABI, 2000.
Gillies MT. The recognition of age-groups within populations of Anopheles gambiae by the pre-gravid rate and the sporozoite rate. Ann Trop Med Parasitol. 1954;48(1):58-74. https://doi.org/10.1080/00034983.1954. 11685599
Christophers SR. The development of the egg follicle in Anophelines. Paludism. 1911;2:73-8.
Mekuria Y, Granados R, Tidwell MA, Williams DC, Wirtz RA, Roberts DR. Malaria transmission potential by Anopheles mosquitoes of Dajabon, Dominican Republic. J Am Mosq Control Assoc. 1991;7(3):456-61.
Bargielowski IE, Lounibos LP, Shin D, Smartt CT, Carrasquilla MC, Henry A, et al. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Infect Genet Evol. 2015;36:456-61. https://doi.org/10.1016/j.meegid.2015.08.016
Ulloa-Garcia A, Gonzalez-Ceron L, Rodriguez MH. Host selection and gonotrophic cycle length of Anopheles punctimacula in southern Mexico. J Am Mosq Control Assoc. 2006;22:648-53. https://doi.org/10.2987/8756- 971X(2006)22[648:HSAGCL]2.0.CO;2
Goindin D, Delannay C, Ramdini C, Gustave J, Fouque F. Parity and longevity of Aedes aegypti according to temperatures in controlled conditions and consequences on dengue transmission risks. PLoS ONE. 2015;10(8):e0135489. https://doi.org/10.1371/journal.pone.0135489
Macdonald WW. Aedes aegypti in Malaya: II Larval and adult biology. Ann Trop Med Parasitol. 1956;50(4):399-414.
Gubler DJ, Bhattacharya N. Observations on the reproductive history of Aedes (Stegomyia) albopictus in the laboratory. Mosq News. 1971;31(3):356-9.
Reuben R. Feeding and reproduction in vector mosquitoes. Proc Indian Acad Sci. 1987;96:275-80. https://doi.org/10.1007/BF03180010
Briegel H. Metabolic relationship between female body size, reserves, and fecundity of Aedes aegypti. J Insect Physiol. 1990;36(3):165-72. https:// doi.org/10.1016/0022-1910(90)90118-Y
Baak-Baak CM, Ulloa-Garcia A, Cigarroa-ToledoN, Tzuc Dzul JC, Machain-Williams C, Torres-Chable OM, et al. Blood feeding status, gonotrophic cycle and survivorship of Aedes (Stegomyia) aegypti (L) (Diptera: Culicidae) caught in churches from Merida, Yucatan, Mexico. Neotrop Entomol. 2017;46(6):622-30. https://doi.org/10.1007/s13744-017-0499-x
Nelson MJ. Aedes aegypti: Biology and Ecology. Pan American Health Organization: Washington DC, 1986.
Day JF, Edman JD, Scott TW. Reproductive fitness and survivorship of Aedes aegypti (Diptera: Culicidae) maintained on blood, with field observations from Thailand. J Med Entomol. 1994;31(4):611-7.
Carrington LB, Armijos MV, Lambrechts L, Barker CM, Scott TW. Effects of fluctuating daily temperatures at critical thermal extremes on Aedes aegypti life-history traits. PLoS ONE. 2013;8(3):e58824. https://doi. org/10.1371/journal.pone.0058824
Gaio AO, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in Aedes aegypti (diptera: culicidae) (L). Parasit Vectors. 2011;4:105. https://doi.org/10.1186/1756-3305-4-105
Klowden MJ. Endogenous regulation of the attraction of Aedes aegypti mosquitoes. J Am Mosq Control Assoc. 1994;10(2):326-32.
Telang A, Wells MA. The effect of larval and adult nutrition on successful autogenous egg production by a mosquito. J Insect Physiol. 2004;50(7):677-85. https://doi.org/10.1016/j.jinsphys.2004.05.001
Telang A, Li Y, Noriega FG, Brown MR. Effects of larval nutrition on the endocrinology of mosquito egg development. J Exp Biol. 2006;209:645-55. https://doi.org/10.1242/jeb.02026
Scott TW, Takken W. Feeding strategies of anthropophilic mosquitoes result in increased risk of pathogen transmission. Trends Parasitol. 2012;28(3):114-21. https://doi.org/10.1016/j.pt.2012.01.001
Xue RD, Edman JD, Scott TW. Age and body size effects on blood meal size and multiple blood feeding by Aedes aegypti (Diptera: Culicidae). J Med Entomol. 1995;32(4):471-4. https://doi.org/10.1093/jmedent/32.4.471