2019, Número 4
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2019; 35 (4)
Biomarcadores en las neoplasias mieloproliferativas clásicas BCR-ABL1 negativas
Fernández ML, Garrote SH, Díaz ACA
Idioma: Español
Referencias bibliográficas: 42
Paginas: 1-14
Archivo PDF: 644.55 Kb.
RESUMEN
Introducción: Los biomarcadores son útiles en la definición del diagnóstico, pronóstico y seguimiento de múltiples enfermedades. La detección o medición de uno o más biomarcadores específicos representan alteraciones en vías genéticas o epigenéticas que controlan la proliferación, diferenciación o muerte celular. Las neoplasias mieloproliferativas constituyen un grupo fenotípicamente diverso de hemopatías malignas de origen clonal, caracterizadas por una sobreproducción simple o multilineal de los elementos eritroides, mieloides y megacariocíticos; así como de una marcada predisposición a la trombosis, sangramiento y transformación leucémica. Dentro de ellas se incluyen: la policitemia vera, la trombocitemia esencial y la mielofibrosis primaria, conocidas como neoplasias mieloproliferativas clásicas BCR-ABL1 (o cromosoma Philadelfia) negativas. Las mutaciones somáticas en genes como JAK2, MPL y CARL se comportan como mutaciones drivers iniciadoras, responsables del fenotipo mieloproliferativo.
Métodos: Se revisaron artículos relacionados publicados en los últimos años, en algunas bases de datos de la Biblioteca Virtual de Salud. En esta revisión se exponen los mecanismos moleculares generales de esas mutaciones y su expresión clínica; se hace referencia a las neoplasias mieloproliferativas triple negativas y sus implicaciones clínicas y se indica el algoritmo diagnóstico propuesto por la Organización Mundial de la Salud que incluye los nuevos biomarcadores.
Conclusiones: El estudio molecular proporciona información valiosa para el
diagnóstico y seguimiento de las neoplasias mieloprolifrativas, pero no logra diferenciar entre
cada una de ellas. Por esto, se requiere de la adecuada aplicación del método clínico para llegar a
un diagnóstico certero con ayuda de otros exámenes complementarios.
REFERENCIAS (EN ESTE ARTÍCULO)
DeVita VT, Lawrence TS, Rosenberg SA, eds. Devita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. 10 ed. Philadelphia: Wolters Kluwer Health; 2015.
Barbui T, Tefferi A, eds. Myeloproliferative Neoplasms: Critical Concepts and Management. Berlín: Springer-Verlag Berlín Heidelberg; 2012.
Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129(6):680-92.
Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin - The clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714-9.
Silvennoinen O, Hubbard SR. Molecular insights into regulation of JAK2 in myeloproliferative neoplasms. Blood. 2015;125(22):3388-92.
Stolyar MA, Klimova OA, Gorbenko AS, Brenner EV, Titov SE, Ivanov MK, et al. JAK2 haplotype 46/1 and JAK2 V617F allele burden in MPN: New evidence against the “hypermutability” hypothesis? Int J Lab Hem. 2017;40(1):e8-e10. doi: 10.1111/ijlh.12765
Lundberg P, Karow A, Nienhold R, Looser R, Hui Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220-8.
Tefferi A. Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1. Leukemia. 2010; 24:1128-38.
Rumi E, Pietra D, Pascutto C, Guglielmelli P, Martínez Trillos A, Casetti I, et al.Clinical effect of driver mutations of JAK2, CALR, or MPL in primary myelofibrosis. Blood. 2014; 124(7):1062-9.
Barbui T, Thiele J, Vannucchi AM, Tefferi A. Rationale for revision and proposed changesof the WHO diagnostic criteria for polycythemiavera, essential thrombocythemia and primarymyelofibrosis. Blood Cancer J. 2015;5:e337.
Tefferi A, Vardiman JW. Classification and diagnosis of myeloproliferative neoplasms: The 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia. 2008;22:14-22.
Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.
Baxter J, Scott LM, Campbell PJ, East C, Fourouclas N, Swanton S, et al. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365:1054-61.
James C, Ugo V, Le Couedic JP Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434(7037):1144-8.
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352: 779-90.
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, et al. Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 2005;7:387–97.
Cahu X, Constantinescu SN. Oncogenic Drivers in Myeloproliferative Neoplasms: From JAK2 to Calreticulin Mutations. Curr Hematol Malig Rep. 2015;10(4):335-43.
Hubbard SR. Mechanistic insights into Regulation of JAK2 Tyrosine Kinase. Front Endocrinol (Lausanne).2018;8: 361. doi: 10.3389/fendo.2017.00361.
Gong JZ, Cook JR, Greiner TC, Hedvat C, Hill CE, Lim MS et al. Laboratory Practice Guidelines for Detecting and Reporting JAK2 and MPL Mutations in Myeloproliferative Neoplasms. J Mol Diagn.2013;15:733e44 doi: 10.1016/j.jmoldx.2013.07.002.
Sieza Y, Di Camilo I, Mazziott L, Archuby ML, Riva ME, Orellano L. Distribución de mutaciones en JAK2, MPL y CALR en pacientes con sospecha de neoplasias mieloproliferativas crónicas Phi negativas provenientes de hospitales públicos de la provincia de Buenos Aires. HEMATOLOGÍA. 2018;22(2):151-6.
Lee E, Lee KJ, Park H, Chung JY, Lee M, Chang MH, et al. Clinical Implications of Quantitative JAK2 V617F Analysis using Droplet Digital PCR in Myeloproliferative Neoplasms. Ann Lab Med. 2018;38:147-54.
Roongrudee S, Teerapong S, Takol C, Adcharee K, Nittaya L, Tanasan S, et al. Characterization and Prognosis Significance of JAK2 (V617F), MPL, and CALR Mutations in Philadelphia-Negative Myeloproliferative Neoplasms. Asian Pac J Cancer Prev. 2016;17(10):4647-53.
Didone A, Nardinelli L, Marchiani M, Lancha Ruiz AR, Lima Costa AL, Lima IS, et al. Comparative study of different methodologie s to detect the JAK2 V617F mutation in chronic BCR-ABL1 negative myeloproliferative neoplasms. Pract Lab Med. 2016;4:30-7. 24. Carranza C, Tinti D, Herrera M, Rosales L, Villegas M, Silva G. Detection of Jak2 V617f Mutation, Secondary to the Presence of Bcr-Abl1 Translocation in a Patient with Chronic Myeloid Leukemia: Report of a Case and Review of the Literature. Int J Genomic Med. 2014;2:116. doi: 10.4172/2332-0672.1000116. 25. Saeidi K. Myeloproliferative neoplasms: Current molecular biology and genetics. Crit Rev Oncol Hematol.2016;98:375-89.
Shirane S, Araki M, Morishita S, Edahiro Y, Sunami Y, Hironaka Y, et al. Consequences of the JAK2V617F allele burden for the prediction of transformation into myelofirosis from polycythemia vera and essential thrombocythemia. Int J Hematol. 2015;101:148-53. 27. Alshemmari SH, Rajaan R, Ameen R, Al-Drees MA, Almosailleakh MR. JAK2 V617F allele burden in patients with myeloproliferative neoplasms. Ann Hematol. 2014;93:791-6. 28. Scott LM, Tong W, Levine RL, Scott MA, Beer PA, Stratton MR, et al. JAK2 exon 12 mutations in polycythemia vera and idiopathic erythrocytosis. N Engl J Med. 2007;356(5): 459-68.
Scott LM. The JAK2 exon 12 mutations: A comprehensive review. Am J Hematol. 2011;86(8):668-76.
Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270. doi: 10.1371/journal.pmed.0030270.
Sasazawa Y, Sato N, Suzuki T, Dohmae N, Simizu S. C-mannosylation of thrombopoietin receptor (c-Mpl) regulates thrombopoietin-dependent JAK-STAT signaling. Biochem. Biophys. Res. Commun. 2015 Dec;468(1-2):262-8. doi: 10.1016/j.bbrc.2015.10.116.
Rashidi A, Heusel JW, Oh ST. Concurrent MPL W515L and Y591D mutations in a patient with myelofibrosis. Blood Cells Mol Dis.2016;60:1-2. doi: 10.1016/j.bcmd.2016.05.010.
Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325-32.
Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR Mutations in Myeloproliferative Neoplasms with Nonmutated JAK2. N Engl J Med. 2013;369(25): 2391-405.
Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic Mutations of Calreticulin in Myeloproliferative Neoplasms. N Engl J Med. 2013; 369(25):2379-90.
Chachoua I, Pecquet C, El-Khoury M, Nivarthi H, Albu R, Marty C, et al. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325-35.
Araki M, Yang Y, Masubuchi N, Hironaka Y, Takei H, Morishita S, et al. Activation of the thrombopoietin receptor by mutant calreticulin in CALR-mutant myeloproliferative neoplasms. Blood. 2016;127(10):1307-16.
Elf S, Abdelfattah NS, Chen E, Perales-Patón J, Rosen EA, Ko A, et al. Mutant calreticulin requires both its mutant c-terminus and the thrombopoietin receptor for oncogenic transformation. Cancer Discov.2016;6(4):1-14.
Imai M, Araki M, Komatsu N. Somatic mutations of calreticulin in myeloproliferative neoplasms. Int J Hematol. 2017;105(6):743-47.
Rosso V, Petiti J, Bracco E, Pedrola R, Carnuccio F, Signorino E, et al. A novel assay to detect calreticulin mutations in myeloproliferative neoplasms. Oncotarget. 2017;8(4):399-405. 41. Tefferi A, Lasho TL, Finke C, Belachew AA, Wassie EA, Ketterling RP, et al. Type 1 vs type 2 calreticulin mutations in primary myelofibrosis: differences in phenotype and prognostic impact. Leukemia. 2014;28(7):1568-70.
Zini R, Guglielmelli P, Pietra D, Rumi E, Rossi C, Rontauroli S, et al. CALR mutational status identifies different disease subtypes of essential thrombocythemia showing distinct expression profiles. Blood Cancer J. 2017;7(12):638.
Langabeer SE. Chasing down the triple-negative myeloproliferative neoplasms: Implications for molecular diagnostics. JAKSTAT. 2016 Nov 14;5(2-4):e1248011. doi: 10.1080/21623996.2016.1248011.
Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127(3):333-42.
Usseglio F, Beaufils N, Calleja A, Raynaud S, Gabert J. Detection of CALR and MPL Mutations in Low Allelic Burden JAK2 V617F Essential Thrombocythemia. J Mol Diagn. 2017;19(1):92-8.
Ahmed RZ, Rashid M, Ahmed N, Nadeem M, Shamsi TS. Coexisting JAK2V617F and CALR Exon 9 Mutations in Myeloproliferative Neoplasms - Do They Designate a New Subtype? Asian Pac J Cancer Prev. 2016; 17(3):923-6.
Tefferi A, Noel P, Hanson CA. Uses and Abuses of JAK2 and MPL Mutation Tests in Myeloproliferative Neoplasms. J Mol Diagn. 2011;13(5):461-6.