2020, Número 1
<< Anterior Siguiente >>
Neumol Cir Torax 2020; 79 (1)
Efecto de tres modos ventilatorios como único soporte en un modelo experimental de inflamación sistémica por lipopolisacárido sobre la hemodinamia, fisiología pulmonar e histología
Guzmán-Cedillo AE, Olmos-Zúñiga JR, Jasso-Victoria R, García-Torrentera R, Gaxiola-Gaxiola M, Silva-Martínez M, Vázquez-Justiniano LF, Baltazares-Lipp M, Hernández-Jiménez C, Zenteno-Galindo E, Vadillo-Ortega F, González-Camarena R
Idioma: Español
Referencias bibliográficas: 60
Paginas: 37-49
Archivo PDF: 1515.79 Kb.
RESUMEN
Introducción: La asistencia mecánica ventilatoria (AMV) en modo liberación por presión de la vía aérea (APRV) y ventilación de alta frecuencia oscilatoria (VAFO) favorecen la protección pulmonar, pero no se utilizan en pacientes con sepsis.
Objetivo: Comparar el efecto de la AMV en modo de ventilación controlada por presión (VCP), APRV y VAFO como única terapia sobre la hemodinamia, gasometría, mecánica e histología pulmonar en un modelo porcino de inflamación sistémica inducida por lipopolisacárido de
Escherichia coli (
E. coli).
Material y métodos: Dieciocho cerdos con inflamación sistémica lipopolisacárido (LPS)
E. coli, se trataron únicamente con AMV: grupo I: VCP, grupo II: APRV y grupo III: VAFO. Durante seis horas se evaluó la hemodinamia, gasometría, mecánica e histología pulmonar.
Resultados: Los tres modos ventilatorios alteran la hemodinamia pulmonar, pero mantienen la gasometría y mecánica pulmonar. El modo VAFO mantiene estables los valores hemodinámicos sistémicos, disminuye la hiperlactatemia (p ‹ 0.05, ANDEVA-MR) y produce menor daño histológico (p ‹ 0.05, Kruskal-Wallis).
Conclusión: Los modos VCP, APRV y VAFO utilizados como único soporte en las fases iniciales de inflamación sistémica inducida con LPS en cerdos, mantienen los valores gasométricos y ventilatorios dentro de los parámetros normales; pero, el modo VAFO favorece la recuperación de los valores hemodinámicos sistémicos y produce menor daño histológico.
REFERENCIAS (EN ESTE ARTÍCULO)
Zhang Y, Gao J, Wang CJ, Zhou LJ, Fang XZ, Yang LQ. Low tidal volume ventilation preconditioning ameliorates lipopolysaccharide-induced acute lung injury in rats. Acta Anaesthesiol Scand 2016;60(6):780-789. doi: 10.1111/aas.12691
Ziebart A, Hartmann EK, Thomas R, et al. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. Respir Res 2014;15:101. https://doi.org/10.1186/s12931-014-0101-6
Wheeler AP, Bernard GR. Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet 2007;369(9572):1553-1564. https://doi.org/10.1016/S0140-6736(07)60604-7
Shankar-Hari M, Phillips GS, Levy ML, et al.; Sepsis Definitions Task Force. Sepsis definitions task force. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315(8):775-787. https://doi.org/10.1001/jama.2016.0289
Seymour CW, Liu VX, Iwashyna TJ, et al. Assessment of clinical criteria for sepsis: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016;315(8):762-774. https://doi.org/10.1001/jama.2016.0288
Fan E, Stewart TE. New modalities of mechanical ventilation: high-frequency oscillatory ventilation and airway pressure release ventilation. Clin Chest Med 2006;27(4):615-625. Abstract viii-ix. https://doi.org/10.1016/j.ccm.2006.06.008
Sevransky JE, Levy MM, Marini JJ. Mechanical ventilation in sepsis-induced acute lung injury/acute respiratory distress syndrome: an evidence-based review. Crit Care Med 2004;32(11 Suppl):S548-S553. https://doi.org/10.1097/01.ccm.0000145947.19077.25
Meredith W, Rutledge R, Fakhry SM, Emery S, Kromhout-Schiro S. The conundrum of the Glasgow Coma Scale in intubated patients: a linear regression prediction of the Glasgow verbal score from the Glasgow eye and motor scores. J Trauma 1998;44(5):839-844. https://doi.org/10.1097/00005373-199805000-00016
Carrasco Loza R, Villamizar Rodríguez G, Medel Fernández N. Ventilator-Induced Lung Injury (VILI) in Acute Respiratory Distress Syndrome (ARDS): volutrauma and molecular effects. Open Respir Med J 2015;9:112-119. https://doi.org/10.2174/1874306401509010112
Dellinger RP, Levy MM, Rhodes A, et al.; Surviving Sepsis Campaign Guidelines Committee Including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 2013;39(2):165-228. https://doi.org/10.1007/s00134-012-2769-8
Kredel M, Bierbaum D, Lotz C, Küstermann J, Roewer N, Muellenbach RM. Therapy of acute respiratory distress syndrome; survey of German ARDS centers and scientific evidence. Anaesthesist 2015;64(4):277-285. https://doi.org/10.1007/s00101-015-0010-1
Fu W, Qin X, You C, Meng Q, Zhao Y, Zhang Y. High frequency oscillatory ventilation versus conventional ventilation in a newborn piglet model with acute lung injury. Respir Care 2013;58(5):824-830. https://doi.org/10.4187/respcare.01972
Roy S, Habashi N, Sadowitz B, et al. Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury. Shock 2013;39(1):28-38. https://doi.org/10.1097/SHK.0b013e31827b47bb
Huang CT, Lin HH, Ruan SY, Lee MS, Tsai YJ, Yu CJ. Efficacy and adverse events of high-frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome: a meta-analysis. Crit Care 2014;18(3):R102. https://doi.org/10.1186/cc13880
Young D, Lamb SE, Shah S, et al.; OSCAR Study Group. High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 2013;368(9):806-813. https://doi.org/10.1056/NEJMoa1215716
Putensen C, Wrigge H. Clinical review: biphasic positive airway pressure and airway pressure release ventilation. Crit Care 2004;8(6):492-497. https://doi.org/10.1186/cc2919
Güldner A, Braune A, Carvalho N, et al. Higher levels of spontaneous breathing induce lung recruitment and reduce global stress/strain in experimental lung injury. Anesthesiology 2014;120(3):673-682. https://doi.org/10.1097/ALN.0000000000000124
Osiovich HC, Suguihara C, Goldberg RN, Hehre D, Martinez O, Bancalari E. Hemodynamic effects of conventional and high frequency oscillatory ventilation in normal and septic piglets. Biol Neonate 1991;59(4):244-252. https://doi.org/10.1159/000243350
Karmrodt J, David M, Yuan S, Markstaller K. Alternative protocol to initiate high-frequency oscillatory ventilation: an experimental study. Crit Care 2006;10(5):R138. https://doi.org/10.1186/cc5052
David M, Gervais HW, Karmrodt J, Depta AL, Kempski O, Markstaller K. Effect of a lung recruitment maneuver by high-frequency oscillatory ventilation in experimental acute lung injury on organ blood flow in pigs. Crit Care 2006;10(4):R100. https://doi.org/10.1186/cc4967
Estados Unidos Mexicanos. AFÍA. Especificaciones técnicas para la producción, cuidado y uso de animales de laboratorio de la Norma Oficial Mexicana NOM-062-ZOO-1999. Diario Oficial de la Federación 6 diciembre, 1999.
National Institutes of Health U.S.A. Guía Para el Cuidado y Uso de Los Animales de Laboratorio. Department of Health and Human Services, Public Health Service, National Institutes of Health U.S.A. Edición Mexicana Auspiciada por la Academia Nacional de Medicina. México, D.F. 2002.
Herrera-Gutiérrez ME, Seller-Pérez G, Quesada-García G, Granados MM, Domínguez JM, Gómez-Villamandos RJ. Development of a septic shock experimental model oriented at training. Application in the training of depuration techniques in the management of severe sepsis. Med Intensiva 2011;35(2):84-91. https://doi.org/10.1016/j.medin.2010.12.011
Koksel O, Kaplan MB, Ozdulger A, et al. Oleic acid-induced lung injury in rats and effects of caffeic acid phenethyl ester. Exp Lung Res 2005;31(5):483-496. https://doi.org/10.1080/01902140590918876
Albertini M, Clement MG, Lafortuna CL, et al. Role of poly-(AΔP-ribose) synthetase in lipopolysaccharide-induced vascular failure and acute lung injury in pigs. J Crit Care 2000;15(2):73-83. https://doi.org/10.1053/jcrc.2000.7903
Keshari RS, Silasi-Mansat R, Zhu H, et al. Acute lung injury and fibrosis in a baboon Model of Escherichia coli sepsis. Am J Respir Cell Mol Biol 2014;50(2):439-450. https://doi.org/10.1165/rcmb.2013-0219OC
Hii HP, Liao MH, Chen SJ, Wu CC, Shih CC. Distinct patterns of Wnt3a and Wnt5a signaling pathway in the lung from rats with endotoxic shock. PLoS One 2015;10(7):e0134492. https://doi.org/10.1371/journal.pone.0134492
Hancock RE, Scott MG. The role of antimicrobial peptides in animal defenses. Proc Natl Acad Sci U S A 2000;97(16):8856-8861. https://doi.org/10.1073/pnas.97.16.8856
Müller-Leisse C, Klosterhalfen B, Hauptmann S, et al. Computed tomography and histologic results in the early stages of endotoxin-injured pig lungs as a model for adult respiratory distress syndrome. Invest Radiol 1993;28(1):39-45. https://doi.org/10.1097/00004424-199301000-00012
Newman JH, Loyd JE, English JK, Ogletree ML, Fulkerson WJ, Brigham KL. Effects of 100% oxygen on lung vascular function in awake sheep. J Appl Physiol Respir Environ Exerc Physiol 1983;54(5):1379-1386. https://doi.org/10.1152/jappl.1983.54.5.1379
Menzel M, Doppenberg EM, Zauner A, et al. Cerebral oxygenation in patients after severe head injury: monitoring and effects of arterial hyperoxia on cerebral blood flow, metabolism and intracranial pressure. J Neurosurg Anesthesiol 1999;11(4):240-251. https://doi.org/10.1097/00008506-199910000-00003
Martin-Flores M, Tseng CT, Robillard SD, et al. Effects of two fractions of inspired oxygen during anesthesia on early postanesthesia oxygenation in healthy dogs. Am J Vet Res 2018;79(2):147-153. https://doi.org/10.2460/ajvr.79.2.147
Emr B, Gatto LA, Roy S, et al. Airway pressure release ventilation prevents ventilator-induced lung injury in normal lungs. JAMA Surg 2013;148(11):1005-1012. https://doi.org/10.1001/jamasurg.2013.3746
Guillamet MC, Rhee C, Patterson AJ. Cardiovascular management of septic shock in 2012. Curr Infect Dis Rep 2012;14(5):493-502. https://doi.org/10.1007/s11908-012-0279-z
Briceño I. Sepsis: Etiología, manifestaciones clínicas y diagnóstico. Medicrit 2005;2(9):203-213.
Traverse JH, Korvenranta H, Adams EM, Goldthwait DA, Carlo WA. Impairment of hemodynamics with increasing mean airway pressure during high-frequency oscilatory ventilation. Pediatr Res 1988;23(6):628-631. https://doi.org/10.1203/00006450-198806000-00020
David M, von Bardeleben RS, Weiler N, et al. Cardiac function and haemodynamics during transition to high-frequency oscillatory ventilation. Eur J Anaesthesiol 2004;21(12):944-952. https://doi.org/10.1017/s0265021504000328
Smailys A, Mitchell JR, DoIig CJ, Tyberg JV, Belenkie I. High-frequency oscillatory ventilation versus conventional ventilation: hemodynamic effects on lung and heart. Physiol Rep 2014;2(3):e00259. https://doi.org/10.1002/phy2.259
Gu XL, Wu GN, Yao YW, Shi DH, Song Y. Is high-frequency oscillatory ventilation more effective and safer than conventional protective ventilation in adult acute respiratory distress syndrome patients? A meta-analysis of randomized controlled trials. Crit Care 2014;18(3):R111. https://doi.org/10.1186/cc13900
Zhou Y, Jin X, Lv Y, et al. Early application of airway pressure release ventilation may reduce the duration of mechanical ventilation in acute respiratory distress syndrome. Intensive Care Med 2017;43(11):1648-1659. https://doi.org/10.1007/s00134-017-4912-z
Derdak S, Mehta S, Stewart TE, et al.; Multicenter Oscillatory Ventilation for Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators. High frecuency oscilatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 2002;166(6):801-808. https://doi.org/10.1164/rccm.2108052
Roosens CD, Ama R, Leather HA, et al. Hemodynamic effects of different lung-protective ventilation strategies in closed–chest pigs with normal lungs. Crit Care Med 2006;34(12):2990-2996. https://doi.org/10.1097/01.CCM.0000242758.37427.16
Cabrera-Rayo A, Laguna-Hernández G, López-Huerta G, Villagómez-Ortiz A, Méndez-Reyes R, Guzmán-Gómez R. Mecanismos patogénicos en sepsis y choque séptico. Med Int Mex 2008;24(1):38-42.
Räsänen J, Downs JB, Stock MC. Cardiovascular effects of conventional positive pressure ventilation and airway pressure release ventilation. Chest 1988;93(5):911-915. https://doi.org/10.1378/chest.93.5.911
Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 2001;164(1):43-49. https://doi.org/10.1164/ajrccm.164.1.2001078
Fort P, Farmer C, Westerman J, et al. High-frequency oscillatory ventilation for adult respiratory distress syndrome a pilot study. Crit Care Med 1997;25(6):937-947. https://doi.org/10.1097/00003246-199706000-00008
Martin-Arsanios D, Barragana AF, Garzón DA, et al. Update in sepsis and septic shock: New definitions and clinical evaluation. Acta Colomb Cuid Intensivo 2017;17(3):158-183. doi: 10.1016/j.acci.2017.03.001
Ortiz G, Dueñas C, Garay M, Díaz G. Hypoxic pulmonary vasoconstriction. Acta Colomb Cuid Intensivo 2013;13(4):37-150.
Miranda-Ruiz R, Castañón-González JA. Hyperglycemia in critically ill patients: clinical implications for treatment. Cir Ciruj 2004;72(6):517-524.
James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable indicator of tissue hypoxia in injury or sepsis. Lancet 1999;354(9177):505-508. https://doi.org/10.1016/S0140-6736(98)91132-1
Sun H, Huang Y, Yin C, Guo J, Zhao R, Yang X. Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs. Animal 2016;10(7):1204-1212. https://doi.org/10.1017/S1751731116000100
Nguyen HB, Rivers EP, Knoblich BP, et al. Early lactate clearance is associated with improved outcome in severe sepsis and septic shock. Crit Care Med 2004;32(8):1637-1642. https://doi.org/10.1097/01.ccm.0000132904.35713.a7
Kaisers U, Kuhlen R, Keske U, et al. Superimposing positive end-expiratory pressure during partial liquid ventilation in experimental lung injury. Eur Respir J 1998;11(5):1035-1042. https://doi.org/10.1183/09031936.98.11051035
Maxwell RA, Green JM, Waldrop J, et al. A randomized prospective trial of airway pressure release ventilation and low tidal volume ventilation in adult trauma patients with acute respiratory failure. J Trauma 2010;69(3):501-510. https://doi.org/10.1097/TA.0b013e3181e75961
Siau C, Stewart TE. Current role of high frequency oscillatory ventilation and airway pressure release ventilation in acute lung injury and acute respiratory distress syndrome. Clin Chest Med 2008;29(2):265-275, vi. https://doi.org/10.1016/j.ccm.2008.02.002
Lara-Cruz J, Mendoza-Rodríguez M, López-González A, Huerta-Valerio R, Sánchez-Domínguez R, Herrera-Morales BE. Ventilación liberadora de presión en vía respiratoria versus ventilación controlada neumoprotectora en falla respiratoria aguda. Rev Asoc Mex Med Crit y Ter 2014;28(2):75-84.
Castañón-González JA, León-Gutiérrez MA, Gallegos-Pérez H, Pech-Quijano J, Martínez-Gutiérrez M, Olvera-Chávez A. Pulmonary mechanics, oxygenation index, and alveolar ventilation in patients with two controlled ventilatory modes. A comparative crossover study. Cir Ciruj 2003;71(5):374-378.
Flores-Badilla A, Alvarado-González A. Ventilación mecánica con soporte de presión. Rev Med Costa Rica Centroam 2007;64(581):223-228.
Albert RK. The role of ventilation-induced surfactant dysfunction and atelectasis in causing acute respiratory distress syndrome. Am J Respir Crit Care Med 2012;185(7):702-708. https://doi.org/10.1164/rccm.201109-1667PP
Eastman A, Holland D, Higgins J, et al. High-frequency percussive ventilation improves oxygenation in trauma patients with acute respiratory distress syndrome: a retrospective review. Am J Surg 2006;192(2):191-195. https://doi.org/10.1016/j.amjsurg.2006.01.021