2019, Número 5
<< Anterior Siguiente >>
Revista Habanera de Ciencias Médicas 2019; 18 (5)
Relevancia de componentes del eje hipotálamo-hipófisis-gonadal en la fisiopatología de proteinopatías del sistema nervioso
Hechavarría Barzaga, Kenia; Aguilera Rodríguez, Raúl; Almaguer Gotay, Dennis; Álvarez Sosa, Amarilis; Almaguer Mederos, Luis Enrique
Idioma: Español
Referencias bibliográficas: 73
Paginas: 704-716
Archivo PDF: 854.88 Kb.
RESUMEN
Introducción: Varias proteinopatías del sistema
nervioso están asociadas a la ocurrencia de
alteraciones en componentes del eje hipotálamohipófisis-
gonadal.
Objetivo: Reflejar la relevancia de componentes
del eje hipotálamo-hipófisis-gonadal en la
fisiopatología de proteinopatías del sistema
nervioso.
Material y Métodos: Se realizó una revisión
bibliográfica durante los meses de enero de 2018
a diciembre de 2018. Fueron consultadas bases
de datos de referencia, con el uso de descriptores
y operadores booleanos. La estrategia de
búsqueda avanzada para la selección de los
artículos fue empleada, teniendo en cuenta la
calidad metodológica o validez de los estudios.
Desarrollo: Fueron identificaron alteraciones del
funcionamiento normal del eje hipotálamohipófisis-
gonadal en varias proteinopatías del
sistema nervioso. Las alteraciones más
frecuentemente reportadas fueron el incremento
en los niveles de gonadotropinas, principalmente
de la hormona luteinizante, en la enfermedad de
Alzheimer, y la disminución de los niveles de
testosterona en las enfermedades de Alzheimer,
Parkinson, Huntington y Esclerosis Lateral
Amiotrófica, con el consiguiente agravamiento
del fenotipo clínico. Se obtuvieron evidencias de
naturaleza preliminar, que fundamentan la
posible ocurrencia de disfunción hipotalámica en
pacientes con ataxias espinocerebelosas.
Conclusiones: Aun cuando existen evidencias que
demuestran la existencia de un vínculo entre la
fisiopatología de proteinopatías del sistema
nervioso y alteraciones en componentes del eje
hipotálamo-hipófisis-gonadal, se requerirán
estudios más extensos e integrales para
confirmar estas asociaciones y para caracterizar
los mecanismos moleculares implicados.
REFERENCIAS (EN ESTE ARTÍCULO)
Scannevin RH. Therapeutic strategies for targeting neurodegenerative protein misfolding disorders. Current Opinion in Chemical Biology. 2018; 44:66-74.
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem. 2016; 124:1121-1141.
Ugalde CL, Finkelstein DI, Lawson VA, Hill AF. Pathogenic mechanisms of prion protein, amyloid-β and α-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers. J Neurochem. 2016; 139(2):162-180.
Kawamata H, Manfredi G. Proteinopathies and OXPHOS dysfunction in neurodegenerative diseases. J Cell Biol. 2017; 216(12):3917-3929.
St-Amour I, Turgeon A, Goupil C, Planel E, Hébert SS. Co-occurrence of mixed proteinopathies in latestage Huntington's disease. Acta Neuropathol. 2018; 135(2):249-265.
De Pablo-Fernández E, Courtney R, Holton JL, Warner TT. Hypothalamic α-synuclein and its relation to weight loss and autonomic symptoms in Parkinson's disease. Mov Disord. 2017; 32(2): 296- 298.
Bellosta-Diago E, Viloria-Alebesque A, Santos- Lasaosa S, Lopez Del Val LJ. The hypothalamus in Huntington's disease. Rev Neurol. 2017; 65(9):415- 422.
Bhatia E, Shukla R, Gupta RK, Misra UK. Multiple pituitary hormone deficiencies in apatient with spinocerebellar ataxia: Magnetic resonance imaging and hormonal studies. J. Endocrinol. Invest. 1993; 16: 639-642.
Libro R, Bramanti P, Mazzon E. Endogenous glucocorticoids: role in the etiopathogenesis of Alzheimer's disease. Neuro Endocrinol Lett. 2017; 38(1):1-12.
Vyas S, Rodrigues AJ, Silva JM, Tronche F, Almeida OFX, Sousa N, et al. Chronic stress and glucocorticoids: from neuronal plasticity to neurodegeneration. Neural Plasticity. 2016; 1-15.
Bartlett DM, Cruickshank TM, Hannan AJ, Eastwood PR, Lazar AS, Ziman MR. Neuroendocrine and neurotrophic signaling in Huntington's disease: Implications for pathogenic mechanisms and treatment strategies. Neurosci Biobehav Rev. 2016; 71: 444-454.
Penke B, Bogár F, Fülöp L. Protein Folding and Misfolding, Endoplasmic Reticulum Stress in Neurodegenerative Diseases: in Trace of Novel Drug Targets. Curr Protein Pept Sci. 2016; 17(2):169-82.
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiologies and therapeutic strategies. Life Sci. 2018; S0024- 3205(18)30822-1.
Hekmatimoghaddam S, Zare-Khormizi MR, Pourrajab F. Underlying mechanisms and chemical/biochemical therapeutic approaches to ameliorate protein misfolding neurodegenerative diseases. Biofactors. 2017; 43(6):737-759.
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, et al. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener. 2017; 6:6.
Bayer TA. Proteinopathies, a core concept for understanding and ultimately treating degenerative disorders? Eur Neuropsychopharmacol. 2015; 25(5):713-24.
Ling H. Untangling the tauopathies: Current concepts of tau pathology and neurodegeneration. Parkinsonism Relat Disord. 2018; 46 Suppl 1:S34-S38.
Ciechanover A, Kwon YT. Protein quality control by molecular chaperones in neurodegeneration. Front Neurosci. 2017; 11:185.
Paulson HL, Shakkottai VG, Clark HB, Orr HT. Polyglutamine spinocerebellar ataxias- from genes to potential treatments. Nat Rev Neurosci. 2017; 18(10):613-626.
Stoyas CA, La Spada AR. The CAG-polyglutamine repeat diseases: a clinical, molecular, genetic, and pathophysiologic nosology. Handb Clin Neurol. 2018; 147:143-170.
Bowen RL, Isley JP, Atkinson RL. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J Neuroendocrinol. 2000; 12: 351- 354.
Short RA, Bowen RL, O’Brien PC, Graff-Radford NR. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin Proc. 2001; 76: 906-909.
Okun MS, Wu SS, Jennings D, Marek K, Rodriguez RL, Fernandez HH. Testosterone level and the effect of levodopa and agonists in early Parkinson disease: results from the INSPECT cohort. Journal of Clinical Movement Disorders. 2014; 1:8.
Gargiulo MG, Meyer M, Rodríguez GE, Garay LI, Sica REP, De Nicola AF, et al. Endogenous progesterone is associated to amyotrophic lateral sclerosis prognostic factors. ActaNeurol Scand. 2011; 123: 60-67.
Saleh N, Moutereau S, Durr A, Krystkowiak P, Azulay J-P, Tranchant C, et al. Neuroendocrine Disturbances in Huntington’s Disease. PLoS ONE. 2009; 4(3): e4962.
Kalliolia E, Silajdžić E, Nambron R, Costelloe SJ, Martin NG, Hill NR, et al. A 24-hour study of the hypothalamo-pituitary axes in Huntington’s disease. PLoS ONE. 2015; 10(10): e0138848.
Berciano J, Amado JA, Freijanes J, Rebello M, Vaquero A. Familial cerebellar ataxia and hypogonadotrophic hypogonadism: evidence for hypothalamic LHRH deficiency. J Neurol. Neurosurg. Psychiatry. 1982; 45: 747.
Fok AC, Wong ME, Cheah J. Syndrome of cerebellar ataxia and hypogonadotropic hypogonadism: evidence of pituitary gonadotropin deficiency. J NeurolNeurosurg Psychiatry. 1989; 52: 407.
Blair JA, McGee H, Bhatta S, Palm R, Casadesus G. Hypothalamic–pituitary–gonadal axis involvement in learning and memory and Alzheimer’s disease: more than “just” estrogen. Frontiers in Endocrinology. 2015a; 6: 45.
Rao CV. There is no turning back on the paradigm shift on the actions of human chorionic gonadotropin and luteinizing hormone. J Reprod Health and Med. 2016; 2:4-10.
Acevedo-Rodríguez A, Kauffman AS, Cherrington BD, Borges CS, Roepke TA, Laconi M. Emerging insights into hypothalamic-pituitary-gonadal axis regulation and interaction with stress signalling. J Neuroendocrinol. 2018; 30(10):e12590.
Andreasson K, Worley PF. Induction of beta- Activin expression by synaptic activity and during neocortical development. Neuroscience. 1995; 69: 781-796.
Pino A, Fumagalli G, Bifari F, Decimo I. New neurons in adult brain: distribution, molecular mechanisms and therapies. Biochem Pharmacol. 2017; 141:4-22.
Blair JA, Bhatta S, McGee H, Casadesus G. Luteinizing Hormone: Evidence for direct action in the CNS. Horm Behav. 2015b; 76: 57-62.
Celec P, Ostatníková D, Hodosy J. On the effects of testosterone on brain behavioral functions. Front Neurosci. 2015; 9:12.
Hines M, Spencer D, Kung KT, Browne WV, Constantinescu M, Noorderhaven RM. The early postnatal period, mini-puberty, provides a window on the role of testosterone in human neurobehavioural development. Curr Opin Neurobiol. 2016; 38:69-73.
Siddiqui AN, Siddiqui N, Khan RA, Kalam A, Jabir NR, Kamal MA, et al. Neuroprotective Role of Steroidal Sex Hormones: An Overview. CNS NeurosciTher. 2016; 22(5):342-50.
Mendell AL, MacLusky NJ. Neurosteroid Metabolites of Gonadal Steroid Hormones in Neuroprotection: Implications for Sex Differences in Neurodegenerative Disease. Front Mol Neurosci. 2018; 11:359.
Brotfain E, Gruenbaum SE, Boyko M, Kutz R, Zlotnik A, Klein M. Neuroprotection by Estrogen and Progesterone in Traumatic Brain Injury and Spinal Cord Injury. Curr Neuropharmacol. 2016; 14(6):641- 53.
Vos T, Allen C, Arora M, Barber RM, Bhutta ZA, Brown A, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016; 388:1545-1602.
Chatani E, Yamamoto N. Recent progress on understanding the mechanisms of amyloid nucleation. Biophys Rev. 2018; 10:527-534.
Metaxas A, Kempf SJ. Neurofibrillary tangles in Alzheimer's disease: elucidation of the molecular mechanism by immunohistochemistry and tau protein phospho-proteomics. Neural Regen Res. 2016; 11(10):1579-1581.
Al-Hader AA, Lei ZM, Rao CN. Novel expression of functional luteinizing hormone/chorionic gonadotropin receptors in cultured glial cells from neonatal rat brains. BiolReprod. 1997; 56: 501-507.
Lukacs H, Hiatt ES, Lei ZM, Rao CV. Peripheral and intracerebroventricular administration of human chorionic gonadotropin alters several hippocampusassociated behaviors in cycling female rats. HormBehav. 1995; 29: 42-58.
Webber KM, Bowen R, Casadesus G, Perry G, Atwood CS, Smith MA. Gonadotropins and Alzheimer’s disease: the link between estrogen replacement therapy and neuroprotection. Acta Neurobiol Exp. 2004; 64:113-118.
Bowen RL, Smith MA, Harris PLR, Kubat Z, Martins RN, Castellani RJ, et al. Elevated luteinizing hormone expression colocalizes with neurons vulnerable to alzheimer’s disease pathology. J Neurosci Res. 2002; 70: 514-518.
Bowen RL, Verdile G, Liu T, Parlow AF, Perry G, Smith MA, et al. Luteinizing hormone, a reproductive regulator that modulates the processing of amyloid-b precursor protein and amyloid-b deposition. J Biol Chem. 2004; 279(19):20539-20545.
Ogawa O, Lee HG, Zhu X, Raina A, Harris PL, Castellani RJ, et al. Increased p27, an essential component of cell cycle control, in Alzheimer’s disease. Aging Cell. 2003; 2:105-110.
Saberi S, Du YP, Christie M, Goldsburry C. Human chorionic gonadotropin increases b-cleavage of amyloid precursor protein in SH-SY5Y cells. Cell MolNeurobiol. 2013; 33(6):747-751.
Burnham VL, Thornton JE. Luteinizing hormone as a key player in the cognitive decline of Alzheimer’s disease. HormBehav. 2015; 76:48-56.
Okun MS, DeLong MR, Hanfelt J, Gearing M, Levey A. Plasma testosterone levels in Alzheimer and Parkinson diseases. Neurology. 2004; 62:411-413.
Verdile G, Laws SM, Henley D, Ames D, Al Bush, Ellis KA, et al. Associations between gonadotropins, testosterone and β-amyloid in men at risk of Alzheimer’s disease. Molecular Psychiatry. 2014; 19:69-75.
Gouras GK, Xu H, Gross RS, Greenfield JP, Hai B, Wang R, et al. Testosterone reduces neuronal secretion of Alzheimer’s beta-amyloid peptides. Proc Natl Acad Sci USA. 2000; 97(3):1202-1205.
Hogervorst E, Bandelow S, Combrinck M, Smith AD. Low free testosterone is an independent risk factor for Alzheimer’s disease. Exp Gerontol. 2004; 39:1633-1639.
Cacabelos R. Parkinson's Disease: From Pathogenesis to Pharmacogenomics. Int J Mol Sci. 2017; 18(3).
Rocha EM, De Miranda B, Sanders LH. Alphasynuclein: pathology, mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurobiol Dis. 2018; 109:249-257.
Okun MS, Walter BL, McDonald WM, Tenover JL, Green J, Juncos JL, DeLong MR. Beneficial effects of testosterone replacement for the nonmotor symptoms of Parkinson disease. Arch Neurol. 2002; 59:(11)1750-1753.
Okun MS, Fernandez HH, Rodriguez RL, Romrell J, Suelter M, Munson S, et al. Testosterone therapy in men with Parkinson disease: results of the TEST-PD Study. Arch Neurol. 2006; 63:(5)729-735.
Chou KL, Moro-De-Casillas ML, Amick MM, Borek LL, Friedman JH. Testosterone not associated with violent dreams or REM sleep behavior disorder in men with Parkinson’s. MovDisord. 2007; 22:411-414.
Mitchell E, Thomas D, Burnet R. Testosterone improves motor function in Parkinson’s disease. J ClinNeurosci. 2006; 13:133-136.
Braak H, Del Tredici K. Neuropathological Staging of Brain Pathology in Sporadic Parkinson's disease: Separating the Wheat from the Chaff. J Parkinsons Dis. 2017; 7(s1):S71-S85.
Garrido A, Aldecoa I, Gelpi E, Tolosa E. Aggregation of α-Synuclein in the gonadal tissue of 2 patients with Parkinson disease. JAMA Neurol. 2017; 74(5):606- 607.
Brown RH, Phil D, AlChalabi A. Amyotrophic Lateral Sclerosis. N Engl J Med. 2017; 377:162-72.
Cykowski MD, Powell SZ, Peterson LE, Appel JW, Rivera AL, Takei H, et al. Clinical significance of TDP-43 neuropathology in Amyotrophic Lateral Sclerosis. J Neuropathol Exp Neurol. 2017; 76(5):402-413.
Militello A, Vitello G, Lunetta C, Toscano A, Maiorana G, Piccoli T, et al. The serum level of free testosterone is reduced in amyotrophic lateral sclerosis. J Neurol Sci. 2002; 195(1):67-70.
Fargo KN, Foster AM, Sengelaub DR. Neuroprotective effect of testosterone treatment on motoneuron recruitment following the death of nearby motoneurons. Dev Neurobiol. 2009; 69(12):825-35.
Little CM, Coons KD, Sengelaub DR. Neuroprotective effects of testosterone on the morphology andfunction of somatic motoneurons following the death of neighboring motoneurons. J CompNeurol. 2009; 512:359-372.
McColgan P, Tabrizi SJ. Huntington's disease: a clinical review. Eur J Neurol. 2018; 25(1):24-34.
Pircs K, Petri R, Madsen S, Brattås PL, Vuono R, Ottosson DR, et al. Huntingtin aggregation impairs autophagy, leading to Argonaute-2 accumulation and global microRNA dysregulation. Cell Rep. 2018; 24(6):1397-1406.
Papalexi E, Persson A, Bjorkqvist M, Petersen A, Woodman B, Bates GP, et al. Reduction ofGnRH and infertility in the R6/2 mouse model of Huntington's disease. Eur J Neurosci. 2005; 22: 1541-1546.
Van Raamsdonk JM, Murphy Z, Selva DM, Hamidizadeh R, Pearson J, Petersen A, et al. Testicular degeneration in Huntington disease. Neurobiol Dis. 2007; 26: 512-520.
Markianos M, Panas M, Kalfakis N, Vassilopoulos D. Plasma testosterone in male patients with Huntington’s disease: relations to severity of illness and dementia. Ann Neurol. 2005; 57:520-525.
Ashizawa T, Öz G, Paulson HL. Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol. 2018; 14(10):590-605.